期刊文献+

基于小波分析的图像稀疏保真度评价 被引量:4

Sparse Image Fidelity Evaluation Based on Wavelet Analysis
下载PDF
导出
摘要 该文针对传统的图像质量评价方法无法有效模拟人类视觉系统(HVS)存在的不足,提出基于小波分析的加权稀疏保真度(Weighting Sparse Fidelity,WSF)图像评价算法。算法以模拟人类视觉系统的神经网络为切入点,对图像进行一阶小波分解得到4个不同方向的子带图像,然后将子带图像分成8×8大小的图像块,采用快速独立分量分析(Fast ICA)的方法对各个图像块进行训练并提取图像特征检测矩阵,根据特征检测矩阵计算各子带图像块的稀疏特征值并建立稀疏保真度质量评价模型。在此基础上,根据细节信息的不同对低频子带图像进行区间划分并设置视觉权重,使之更加接近人眼的主观视觉。实验中对LIVE库中所有图像进行算法验证,其结果表明,所提方法能很好地对各种失真类型的图像进行评价。基于小波分析的稀疏保真度评价算法能够有效模拟人类视觉系统的多频特性和视觉皮层感知机制,弥补现有图像质量评价方法在此方面的不足。 To overcome the limitations of traditional image quality assessment methods, which are not well consistent with subjective human evaluation, a quality assessment algorithm of Weighting Sparse Fidelity(WSF) based on wavelet analysis is proposed. The arithmetic simulates nerve network of Human Vision System(HVS) as research point, the image is decomposed with wavelet into four-sub band images, which are divided into blocks at size of 8 ′8, then using Fast Independent Component Analysis training(Fast ICA) method to train the image blocks. Then, each image block sparse character matrix is extracted to calculate the sparse feature fidelity of the image and build the sparse fidelity quality evaluation model. On this basis, the image is divided into a plurality of interval according to the different details of the visual image information and a visual weight is set in each section, which can be consistent with subjective human evaluation. The experiment results on LIVE database show that the proposed method has a good evaluation of all kinds of distortion types and is highly consistent with human subjective evaluations. The proposed algorithm can effectively simulate the weighted visual cortex of the human visual system perception mechanisms, which compensates for deficiencies of existing image quality assessment methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2055-2061,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60975008) 重庆市教委科学技术研究项目(KJ1400434)资助课题
关键词 图像质量评价 稀疏保真度 独立分量分析 视觉加权 主客观一致性 Image quality assessment Sparse feature fidelity Independent Component Analysis(ICA) Human visual weighted Consistency between subjective and objective evaluations
  • 相关文献

参考文献16

  • 1蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226. 被引量:177
  • 2陈勇,李愿,吕霞付,谢正祥,冯鹏.视觉感知的彩色图像质量积极评价[J].光学精密工程,2013,21(3):742-750. 被引量:24
  • 3郭迎春,于明,Zhu Qiu-ming.基于子带相似性分析的JPEG2000图像无参考质量评价[J].电子与信息学报,2011,33(6):1496-1500. 被引量:7
  • 4Vu P V and Chandler D M. A fast wavelet-based algorithm for global and local image sharpness estimation[J]. IEEE Signal Processing Letters, 2012, 19(7): 423-426.
  • 5Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 6Sheikh H R and Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
  • 7Li C and Bovik A C. Content-partitioned structural similarity index for image quality assessment[J]. Signal Processing: Image Communication, 2010, 25(7): 517-526.
  • 8Zhang L, Zhang D, and Mou X. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
  • 9李柯蒙,邵枫,蒋刚毅,郁梅.基于稀疏表示的立体图像客观质量评价方法[J].光电子.激光,2014,25(11):2227-2233. 被引量:4
  • 10Bell A J and Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.

二级参考文献91

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2谢正祥,王志芳,刘燕欢,刘玉红,王颖,李虹.灰度谱分级平坦化理论[J].中国医学物理学杂志,2006,23(6):405-407. 被引量:19
  • 3王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 4VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 5Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 6Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 7Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 8Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 9ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.
  • 10Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.

共引文献205

同被引文献47

  • 1闫莉萍,刘宝生,周东华.一种新的图像融合及性能评价方法[J].系统工程与电子技术,2007,29(4):509-513. 被引量:29
  • 2ZHANG M, MURAMASTSU C, ZHOU X, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207-210.
  • 3MANTIUK R K, TOMASZEWSKA A, and MANTIUK R. Comparison of four subjective methods for image quality assessment[J]. Computer Graphics Forum, 2012, 31(8): 2478-2491.
  • 4ZHANG L, SHEN Y, and LI H. VSI: a visual saliency-induced index for perceptual image quality assessment[J]. 1EEE Transactions on Image Processing, 2014, 23(10): 4270-4281.
  • 5HONG R, PAN J, Hao S, et al. Image quality assessment based on matching pursuit[J]. Information Sciences, 2014, 273: 196-211.
  • 6WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 7WANG Z, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. IEEE Asilomar Conference on Signals~ Systems and Computers~ Pacific Grove, CA, USA, 2003: 1398-1402.
  • 8SAMPAT M P, WANG Z, GUPTA S, et al. Complex wavelet structural similarity: A new image similarity index[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2385-2401.
  • 9WANG Z and LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185-1198.
  • 10SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部