期刊文献+

分布式损耗加载和导引中心调节对TE11模工作回旋行波管稳定性影响的多模稳态分析 被引量:1

Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube
下载PDF
导出
摘要 该文利用多模稳态非线性理论,研究损耗材料加载和导引中心半径调节对回旋行波管稳定性改善的效果。结果表明,随着损耗材料电导率的减小返波振荡强度逐渐减小直至完全消失,同时工作模式输出功率显著增大;适当增大导引中心半径后,完全抑制返波振荡需要的损耗更小,可以减轻热损耗散热的困难,同时还能减小管子输出性能对电导率变化的敏感性。 In this paper, the effect of distributed loss loading and guiding center radius modifying on the stability of a TE11 mode Gyro-Traveling Wave Tube(Gyro-TWT) is studied by multimode steady-state method. The result shows that the output power of the backward oscillation mode keeps weaken till zero as the conductance of the lossy material reduces, while the output power of the working mode grows significantly. As guiding center radius increases, loss loading needed to suppress oscillation completely is weaker, which makes heat easier to dissipate. Besides, the increment of guiding center radius also makes the output characteristic less sensitive to conductance variation.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2260-2264,共5页 Journal of Electronics & Information Technology
关键词 回旋行波管 多模稳态 分布式损耗 导引中心半径 返波振荡 Gyro-Traveling Wave Tube(Gyro-TWT) Multimode steady-state Distributed loss Guiding center radius Backward wave oscillation
  • 相关文献

参考文献17

  • 1Lau Y Y, Chu K R, Barnett L R, et al.. Gyrotron traveling wave amplifier1: analysis of oscillations[J]. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-392.
  • 2Barnett L R, Chang L H, Chen H Y, et al.. Absolute instability competition and suppression in a mllimeter-wave gyrotron traveling wave tube[J]. Physical Review Letters, 1989, 63(10): 1062-1065.
  • 3薛智浩,刘濮鲲,杜朝海.W波段螺旋波纹波导回旋行波管注波互作用的非线性分析[J].物理学报,2014,63(8):1-8. 被引量:2
  • 4Tang Y, Luo Y, Xu Y, et al.. Self-consistent nonlinear analysis and 3D particle-In-cell simulation of a W-band gyro-TWT[J]. Journal of Infrared Millmeter and Terahz Waves, 2014, 35(10): 799-812.
  • 5Wang J X, Luo Y, Xu Y, et al.. Numerical design and optimization of a curved collector for a Q-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2014, 61(1): 147-150.
  • 6Denisov G G, Samsonov S V, Mishakin S V, et al. Microwave system for feeding and extracting power to and from a gyro-TWT through one window[J]. IEEE Electron Devices Letters, 2014. 35(7): 789-791.
  • 7Wang J X, Luo Y, Xu Y, et al. Simulation and experiment of a Ku-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2013, 61(6): 1818-1823.
  • 8Alaria M K, Choyal Y, and Sinha A K. Design of a Ka-band gyro-TWT amplifier for broadband operation[J]. Physics of Plasmas, 2013, 20(7): 073110.1-073110.6.
  • 9Yan R, Tang Y, Luo Y, et al.. Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide[J]. IEEE Transactions on Plasma Science, 2014, 61(7): 2564-2569.
  • 10Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106.

二级参考文献26

  • 1朱世秋,王峨锋,李宏福,闫铁昌,冯进军,李浩,刘迎辉.螺旋波纹波导模式分析[J].强激光与粒子束,2006,18(11):1869-1872. 被引量:5
  • 2鄢然 罗勇 李家胤 蒲友雷 王建勋 雷朝军 刘迎辉.物理学报,2008,57:460-460.
  • 3焦重庆,罗积润.一种三段式互作用结构谐波倍增回旋行波放大器互作用电路的模拟[J].电子与信息学报,2007,29(8):2009-2013. 被引量:3
  • 4Luce T C 2002 IEEE Trans. Plasma Sci. 30 734.
  • 5Thumm M 2005 Int. J. Infrared and Millimeter Waves 26 483.
  • 6Tolkachev A A, Makota V A, Pavlova M P 1998 Proceedings of the 18th Moscow International Conference on Antenna Theory and Technology Moscow, Russia, September 22-24, 1998 15.
  • 7Chu K R, Granatstein V L, Latham P E, Lawson W, Striffler C D 1985 IEEE Trans. Plasma Sci. 13 424.
  • 8Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391.
  • 9Tsai W C, Chang T H, Chen N C, Chu K R, Song H H, Luhmann N C 2004 Phys. Rev. E 70 056402.
  • 10Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90.

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部