期刊文献+

Influence of cerium on microstructures and electrochemical properties of Al-Mg-Sn-Hg anode materials for seawater battery 被引量:12

Influence of cerium on microstructures and electrochemical properties of Al-Mg-Sn-Hg anode materials for seawater battery
原文传递
导出
摘要 Aluminum is an innovative anode material for seawater battery. But large polarization and low electrochemical activity restrict its application. In this research, A1-Mg-Sn-Hg-Ce anode materials were prepared and the microstructures were investigated by scanning electron microscopy (SEM). The electrochemical properties of A1-Mg-Sn-Hg-Ce anode materials were measured by potentiodynamic polarization and potential-time discharge in a 4.5 wt.%NaOH solution at 353 K. The results indicated that the increasing content of cerium addition refined the grain structure of A1-Mg-Sn-Hg alloy and promoted the uniform distribution of Sn and Hg elements in A1 matrix. The morphology of second phases changed from disperse granular to intergranulate strip with the increasing content of cerium addition in AI-Mg-Sn-Hg alloy. During the half-cell tests at a 650 mA/cm3 current density, the discharge activity of AI-Mg-Sn-Hg-Ce alloy was improved with the increasing content of cerium addition. The average discharge potential of AI-Mg-Sn-Hg-0.3 wt.%Ce alloy was -1.721 V (vs. SCE), which was more negative than -1.406 V (vs. SCE) in AZglD. The best corrosion resistance occurred in A1-Mg-Sn-Hg-0.05 wt.%Ce alloy with the corrosion current density, 18.84± 2.21 mA/cm2. The corrosion behaviours of A1-Mg-Sn-Hg-Ce alloys were also analyzed. Aluminum is an innovative anode material for seawater battery. But large polarization and low electrochemical activity restrict its application. In this research, A1-Mg-Sn-Hg-Ce anode materials were prepared and the microstructures were investigated by scanning electron microscopy (SEM). The electrochemical properties of A1-Mg-Sn-Hg-Ce anode materials were measured by potentiodynamic polarization and potential-time discharge in a 4.5 wt.%NaOH solution at 353 K. The results indicated that the increasing content of cerium addition refined the grain structure of A1-Mg-Sn-Hg alloy and promoted the uniform distribution of Sn and Hg elements in A1 matrix. The morphology of second phases changed from disperse granular to intergranulate strip with the increasing content of cerium addition in AI-Mg-Sn-Hg alloy. During the half-cell tests at a 650 mA/cm3 current density, the discharge activity of AI-Mg-Sn-Hg-Ce alloy was improved with the increasing content of cerium addition. The average discharge potential of AI-Mg-Sn-Hg-0.3 wt.%Ce alloy was -1.721 V (vs. SCE), which was more negative than -1.406 V (vs. SCE) in AZglD. The best corrosion resistance occurred in A1-Mg-Sn-Hg-0.05 wt.%Ce alloy with the corrosion current density, 18.84± 2.21 mA/cm2. The corrosion behaviours of A1-Mg-Sn-Hg-Ce alloys were also analyzed.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第9期1010-1016,共7页 稀土学报(英文版)
基金 supported by National Natural Science Foundation of China(51101171) the Specialized Research Fund for the Doctor Program of Higher Education(20110162120051)
关键词 A1 anode materials rare earths corrosion resistance electrochemical activity scanning electron microscopy A1 anode materials rare earths corrosion resistance electrochemical activity scanning electron microscopy
  • 相关文献

参考文献8

二级参考文献63

共引文献115

同被引文献65

引证文献12

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部