期刊文献+

Veronese曲面的一个特征

A Characterization of Veronese the Surface
下载PDF
导出
摘要 主要研究了球面Sn+p中n维紧致Willmore子流形M上的薛定谔算子L=-△-q的第一特征值问题,并讨论了L的第一特征值与子流形M的关系,其中q是M上的光滑函数。 In this paper,we investigate the first eigenvalue of Schrdinger operator L =-△-q in Mn,here Mnbe a compact Willmore submanifold in the unit sphere Sn + p,and q is some smooth function on M. We discuss the relationship between the first eigenvalue of L and submanifold M.
作者 韩方方
出处 《江西科学》 2015年第4期467-470,共4页 Jiangxi Science
关键词 Willmore子流形 薛定谔算子 特征值 Willmore submanifold Schrodinger operator eigenvalue
  • 相关文献

参考文献1

二级参考文献11

  • 1A M Li, J M Li. An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch Math, 1992, 58: 582-594.
  • 2H ZLi. Willmore surfaces in S^m, Ann Global Geom Anal, 2002, 21: 203-213.
  • 3H Z Li. Willmore submanifolds in a sphere, Math Research Lett, 2002, 9: 771-790.
  • 4S Montiel, A Ros. Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent Math, 1986, 83: 153-166.
  • 5S C Shu. Curvature and rigidity of Willmore submanifolds, Tsukuba J Math, 2007, 31: 175-196.
  • 6J Simons. Minimal varieties in Riemannian manifolds, Ann of Math, 1968, 88: 62-105.
  • 7J Weiner. On a problem of Chen, Willmore, et al, Indiana Univ Math J, 1978, 27': 19-35.
  • 8CXWu. New characterizations of the Clifford tori and the Veronese surface, Arch Math, 1993, 61: 277-284.
  • 9H W Xu. Ln/2-pinching theorems for submanifolds with parallel mean curvature in a sphere, J Math Soc Japan, 1994, 46: 503-515.
  • 10HWXu, DYYang. The gap phenomenon for extremal submanifolds in a Sphere, Differential Geom and its Applications, 2011, 29: 26-34.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部