期刊文献+

可编程双极性sigmoid函数及其导数发生器 被引量:2

Programmable generator of ambipolar Sigmoid function and its derivative
下载PDF
导出
摘要 在硬件实现的神经网络中,为了解决神经元激活电路结构复杂、参数不可调、与突触电路不匹配的问题,基于跨导线性原理,提出了一种双极性sigmoid激活函数及其导数发生器。该函数发生器仅由一个跨导线性环和两个差分跨导电路构成,通过改变外部偏置电流和电压可调节函数的幅值、阈值和增益因子,具有结构简单、易于编程的优点。实现的电路可选择电流或者电压输出,适用于各种电流模式或者电压模式神经网络中。采用TSMC 0.35um CMOS集成工艺对电路进行PSPICE仿真测试,结果表明,该电路产生的函数及其导数与理想函数拟合度好,相对误分别不超过2%和4%。 In the hardware realized neural network, in order to solve the problems of activation function circuit, such as complicated structure, unadjustable parameter and mismatch with the synapse, an ambipolor Sigmoid activation function and its derivative generator based on the tanslinear principle was presented. The proposed generator consists only of a translinear loop circuit and two difference transconductance circuits. The amplitude, the threshold and the gain factor of the generated function can be adjusted through external bias current or voltage, so it has the merits of simplicity and programmability. The current or the voltage can be selected as the output signal, so the generator is applicable to current-mode or voltage-mode neural networks. The proposed circuit is simulated and analyzed with PSPICE software, using TSMC 0.35um CMOS technology parameters. The results show that the proposed circuit fits well with the ideal function, the relative error of the generated function and its derivative is less than 2% and 4% respectively.
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第8期1137-1143,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61176032)资助项目
关键词 SIGMOID函数 神经网络 函数发生器 跨导线性环 可编程 sigmoid function neural network function generator translinear loop programmability
  • 相关文献

参考文献19

  • 1彭基伟,吕文华,行鸿彦,武向娟.基于改进GA-BP神经网络的湿度传感器的温度补偿[J].仪器仪表学报,2013,34(1):153-160. 被引量:122
  • 2CHEN J, SHIBATA T. Neuron-MOS-based VLSI imple- mentation of pulse-coupled neural networks for image feature generation [ J]. IEEE Transactions on Circuits and Systems-I, 2010, 57(6) : 1143-1153.
  • 3GATET L, BETEILLE H. Measurement range increase of a phase-shift laser rangefinder using a CMOS analog neural network [ J 1. IEEE Transactions on Instrumenta- tion and Measurement, 2009, 58 (6) : 1911-19 l 8.
  • 4舒迪,祁欣.人工神经网络在无缝线路应力检测中的研究[J].电子测量与仪器学报,2013,27(6):515-520. 被引量:7
  • 5邵婷婷,樊延虎,林开东.基于RBF神经网络的电子罗盘误差补偿研究[J].电子测量技术,2014,37(3):36-38. 被引量:11
  • 6JANOS B, PETER F. Novel calculation of fuzzy expo- nent in the sigmoid functions for fuzzy neural networks [ J]. Neurocomputing, 2014, 129(10) : 458-466.
  • 7MISRA J, SAHA I. Artificial neural networks in hard- ware: a survey of two decades of progress [ J ]. Neuro- computing, 2010(74) : 239-255.
  • 8BAJGER M, OMONDI A. Low-error, high-speed ap-proximation of the sigmoid function for large FPGA im- plementations [ J ]. Journal of Signal Processing Sys- tems, 2008, 52(2) : 137-151.
  • 9ASHKAN H N, KARL L, ROBERTO M, et al. Effi- cient hardware implementation of the hyperbolic tangent sigmoid function[C]. IEEE International Symposium on Circuits and Systems, Taipei, 2009 : 2117v2120.
  • 10CAMPO I, FINKER R, ECHANOBE J, et al. Con- trolled accuracy approximation of sigmoid function for efficient FPGA-based implementation of artificial neu- rons [ J]. Electronics Letters, 2013, 49 ( 25 ) : 1598-1600.

二级参考文献68

共引文献146

同被引文献19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部