期刊文献+

宽带恒定束宽盲波束形成算法 被引量:3

Wideband Constant Beamwidth Blind beamforming Algorithm
下载PDF
导出
摘要 针对传统盲源分离算法对宽带阵列信号适用性较差的问题,提出一种基于时频分析的宽带恒定束宽盲波束形成算法。该算法首先将接收信号变换到时频域上并提取出单源点。然后,对单源点聚类并求解信号在不同频点上的导向矢量。最后,通过提出一种信号来向未知的空间响应变化约束方法,实现宽带恒定束宽盲波束形成。该算法避免了将宽带盲波束形成转换为卷积混合的盲源分离,因而不存在时域盲源分离算法中系统参数随滤波器阶数急剧增加的问题,也不存在频域算法中排序和幅度模糊的问题。仿真结果表明,算法能够较好地实现宽带信号的盲分离,且输出信干噪比高于时域、频域以及时频域盲源分离算法,实测数据的处理结果验证了该算法的实用性。 Conventional blind source separation algorithms have poor suitability for wideband array signals. To address the problem, a novel wideband constant beamwidth blind beamforming algorithm based on time-frequency analysis is proposed. The received array signals are firstly transformed into time-frequency domain, and the single-source points are extracted. Then, the single-source points are clustered into different classes, which are used to obtain the signal steering vector at dif- ferent frequencies. Finally, the wideband constant beamwidth blind beamforming is achieved by a spatial response variation constraint method without knowledge of the direction of arrival (DOA). The transformation from wideband blind beamform- ing to the blind separation of convolution mixtures is avoided in the proposed algorithm. Thus, the system parameters of time-domain algorithms will not increase sharply with the length of filter order, and the arbitrary permutation and scaling ambiguity of frequency-domain algorithms are also eliminated. The simulations illustrate that the proposed algorithm can well separate the wideband signals and achieve a higher output signal to interference plus noise ratio (SINR) compared with the time-domain, frequency-domain and time-frequency-domain algorithms. The practicality of the proposed algorithm is demonstrated by the measured data.
出处 《信号处理》 CSCD 北大核心 2015年第7期784-793,共10页 Journal of Signal Processing
基金 国家自然科学基金(61401469)
关键词 盲波束形成 恒定束宽 时频分析 宽带阵列信号 blind beamforming constant beamwidth time-frequency analysis wideband array signals
  • 相关文献

参考文献22

  • 1Zhou M,Veen A J V D.Blind beamforming techniques for automatic identification system using GSVD and track- ing[C]// IEEE International Conference on Acoustic,Speech and Signal Processing(ICASSP),Florence,2014:3012-3016.
  • 2Bhotto M Z A,Ivan V B.Constant modulus Blind adap- tive beamforming based on unscented Kalman filtering [J].IEEE Signal Processing Letters,20.14,22(4):474-478.
  • 3Lee J H,Huang C C.Blind adaptive beamforming for cy- clostationary signals:a subspace projection approach[J].IEEE Antennas and Wireless Propagation Letters,2009,8(4):1406-1409.
  • 4Saruwatari H,Kawamura T,Nishikawa T,et al.Blind source separation based on a fast-convergence algorithm combining ICA and beamforming[J].IEEE Transactions on Audio,Speech,and Language Processing,2006,14(2):666-678.
  • 5Huang X Z,Wu H C,Jose C.Robust blind beamforming algorithm using joint multiple matrix diagonalization[J].IEEE Sensors Journal,2007,7(1):130-136.
  • 6徐舜,刘郁林,陈绍荣.一种非平稳卷积混合信号的时域盲源分离算法[J].电子与信息学报,2008,30(3):589-592. 被引量:5
  • 7NguyenThi H L,Jutten C.Blind source separation for con- volutive mixtures[J].Signal Processing,1995,45(2):209-229.
  • 8万坚,李明,朱中梁.基于最大熵化法的卫星信号盲分离[J].电子与信息学报,2006,28(12):2256-2258. 被引量:2
  • 9He Z S,Xie S L,Ding SX,et al.Convolutive blind source separation in the frequency domain based on sparse representation[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(5):1551-1563.
  • 10Fiori S.Extended Hebbian learning for blind separation of complex-valued sources[J].IEEE Transactions on Cir- cuits and Systems,2003,50(4):195-202.

二级参考文献140

共引文献16

同被引文献28

  • 1范志攀,吴瑛,韩昭,张莉.一种改进的恒模多目标盲波束形成算法研究[J].电路与系统学报,2005,10(2):95-98. 被引量:1
  • 2万坚,李明,朱中梁.基于最大熵化法的卫星信号盲分离[J].电子与信息学报,2006,28(12):2256-2258. 被引量:2
  • 3Mlguez J ,Castedo L. A Linearly Constrained Constant Mod- ulus Approach to Blind Adaptive Multiuser Interference Suppression [ J ]. IEEE Communications Letters, 1998,2 (8) :217-219.
  • 4Zhang L, Liu W, Langley R J. A Class of Constant Mod- ulus Algorithms for Uniform Linear Arrays with a Conju- gate Symmetric Constraint [ J ]. Signal Processing, 2010, 90(9) : 2760-2765.
  • 5Song X, Wang J, Li Q, et al. Robust Least Squares Con- stant Modulus Algorithm to Signal Steering Vector Mis- matches [ J ]. Wireless Personal Communications, 2013, 68 ( 1 ) : 79-94.
  • 6Qin B, Cai Y, Champagne B, et al. A Low-complexity Variable Forgetting Factor Constant Modulus RLS Algo- rithm for Blind Adaptive Beamforming [ J ]. Signal Pro- cessing. 2014. 105: 277-282.
  • 7Bhotto Z, Bajic I. Constant Modulus Blind Adaptive Beam- forming Based on Unscented Kalman Filtering [ J ]. IEEE Signal Processing Letters,2015,22(4) :474-478.
  • 8Treichler J, Agee B. A New Approach to Muhipath Cor- rection of Constant Modulus Signals [ J ]. IEEE Transac- tions on Acoustics, Speech and Signal Processing, 1983, 31(2) : 459-472.
  • 9Agee B G. The Least-squares CMA: A New Technique for Rapid Correction of Constant Modulus Signals [ C ]/// IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), 1986: 953-956.
  • 10Shynk J J, Gooeh R P. The Constant Modulus Array for Co- channel Signal Copy and Direction Finding [ J ]. IEEE Transactions on Signal Processing, 1996,44 ( 3 ) :652- 660.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部