期刊文献+

协方差矩阵稀疏表示在网格失配波达方向估计中的应用 被引量:1

Application of Array Covariance Matrix Sparse Representation in Grid Mismatching DOA Estimation
下载PDF
导出
摘要 该文利用了入射信号在空域的稀疏性,将波达方向(DOA)估计问题描述为在网格划分的空间协方差矩阵稀疏表示模型,并将其松弛为一个凸问题,从而提出了一种网格匹配下的交替迭代方法(AIEGM)。传统的基于稀疏重构的波达方向估计算法由于其模型的局限性,一旦入射角不在预先设定的离散化网格上,就会造成估计性能的急剧恶化。针对这个问题,该算法可以在离散化网格比较粗糙的前提下,通过交替迭代的方法求解一系列基追踪去噪(BPDN)问题,对于不在网格上的真实角度估计值进行修正,从而达到更精确的波达方向估计。仿真结果证明了AIEGM算法的有效性。 To estimate the true (unknown) directions which may not exactly fall on the preselected grid, a novel direction- of-arrival (DOA) estimation method based on the sparse spatial covarianee model and the off-grid representation of the steering vector with Taylor expansion is presented. Utilizing the spatial sparse property of incident signals, this paper for- mulates the DOA estimation problem as an array covariance matrix sparse representation model in a discretized grid, and re- laxes the model as a convex problem. Thus, an alternating iterative estimator with grid matching (AIEGM) is proposed. Because of the limitations of grid-based model, the estimation performance of conventional methods based on sparse signal reconstruction can be highly deteriorated if the true directions of arrival are not on the preseleeted discretized grid. The pro- posed algorithm solves a series of basis pursuit denoising (BPDN) problems on a coarse grid for that problem, and revises the DOA estimation results to achieve higher estimation accuracy and has lower computational complexity than the existing off-grid DOA estimation methods. Simulation results confirm the efficacy of AIEGM.
出处 《信号处理》 CSCD 北大核心 2015年第7期794-799,共6页 Journal of Signal Processing
基金 国家自然科学基金委员会和中国工程物理研究院联合基金资助项目(11176005)
关键词 波达方向估计 稀疏表示 网格匹配 交替迭代方法 direction-of-arrival (DOA) estimation sparse representation grid matching alternating iterative estimator
  • 相关文献

参考文献17

  • 1Schmidt R O.Multiple emitter location and signal parame- ters estimation[J],IEEE Trans.Antennas and Propag.,1986,34(3):276-280.
  • 2Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Trans.Acoust.,Speech Signal Process,1989,37(7):984-995.
  • 3Ziskind I,Wax M.Maximum likelihood localization of mul- tiple sources by alternating projection[J].IEEE Trans.Acoust.,Speech Signal Process,1988,36(10):1553-1560.
  • 4Donoho D L.Compressed sensing[J].IEEE Trans.Inf.Theory,2006,52(4):1289-1306.
  • 5王晓庆,陶荣辉,甘露.基于贪婪算法的高分辨信号源DOA估计[J].信号处理,2012,28(5):705-710. 被引量:5
  • 6Gorodnitsky I,Rao B.Sparse signal reconstruction from limited data using FOCUSS:a reweighted minimum norm algorithm[J].IEEE Trans.Signal Process,1997,45(3):600-616.
  • 7Gorodnitsky I,Rao B,George J.Source localization in magnetoencephalography using an iterative weighted mini- mum norm algorithm[C]// The Twenty-Sixth Asilomar Conference on Signals,Systems and Computers,Pacific Grove,GA,Oct.26-28,1992:167-171.
  • 8Malioutov D M,Qetin M,Willsky A S.A sparse signal reconstruct on perspective for source localization with sen- sor arrays[J].IEEE Trans.Signal Process,2005,53(8):3010-3022.
  • 9Kim J,Li O,Ye J.Compressive MUSIC:Revisiting the link between compressive sensing and array signal pro- cessing[J].IEEE Trans.Inf.Theory,2012,58(1):278-301.
  • 10Lee K,Bresler Y,Junge M.Subspace methods for joint sparse recovery[J].IEEE Trans.Inf.Theory,2012,58(6):3613-3641.

二级参考文献15

  • 1Frost O L. An algorithm for linearly constrained adaptive processing[ J ]. IEEE Proc., 1972,60 (8) :926-955.
  • 2Schmidt R O. Multiple emitter location and signal parame- ter estimation[ J]. IEEE Trans. Antennas Propag. , 1986, 34(3) :276-280.
  • 3Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [ J ]. IEEE Trans. Acoust. Speech Signal Process, 1989,37 (7) :984-995.
  • 4Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection [ J ]. IEEETrans. ASSP, 1988,36(10) : 1553-1560.
  • 5Donoho D L. Compressed sensing[ J]. IEEE Trans. Inf. Theory, 2006,52(4) : 1289-1306.
  • 6Fuchs J J. On the application of the global matched filter to DOA estimation with uniform circular arrays[ J]. IEEE Trans. Signal Process. , 2001,49 (4) :702-709.
  • 7Malioutov D, Mujdat C, Willsky A. A Sparse Signal Re- construction Perspective for Source Localization with Sen- sor Arrays [ J ]. IEEE Trans. Signal Process. , 2005,53 (8) :3010-3022.
  • 8Gurbuz A C, McClellan J H. A compressive beamformingaethod [ J ]. IEEE ICASSP, 2008,2617-2620.
  • 9Hyder M M, Matlata K. Direction-of-Arrival Estimation Using a Mixed L2,0 Norm Approximation [ J ]. IEEE Trans. Signal Process. , 2010,58 (9) :4646-4655.
  • 10Wang Y, Leus G, Pandharipande A. Direction estimation using compressive sampling array processing [ J ]. IEEE 15th Workshop on Sta. Signal Process. , 2009,626-629.

共引文献4

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部