期刊文献+

改进奇异值分解算法在时间域瞬变电磁信号降噪中的应用 被引量:5

Application of Advanced Singular Value Decomposition Algorithm to Time Domain Transient Electromagnetic Signal De-noising
下载PDF
导出
摘要 奇异值分解降噪算法中,有效秩阶次的判断对降噪算法的性能的影响至关重要。为选取更准确的有效秩阶次,本文研究了奇异值序列的差分,提出判断奇异值分解重构的有效秩阶次的新方法,并应用其对时间域瞬变电磁信号降噪,提高输出信号的信噪比。与现有判断有效秩阶次的算法不同,本文算法考察奇异值序列的归一化差分的峰值而不是最大值,通过选择归一化差分的合适峰值,并综合差分比序列以判断阶次。实验中发现,对于两个大小相近的尖峰,其中差分比小的,更适合作为有效秩阶次。本文算法在降噪的同时,能较好地保留有用信号的波形特征,减小失真。 In the singular value decomposition de-noising algorithm, the choice of the effective rank order is of great impor- tance to influence the performance of the de-noising algorithm. To select a more accurate effective rank order, this paper studied the difference of singular value sequence, proposed a new method to determine the effective rank order, applied it to de-noise the time domain transient electromagnetic signal, and raised the output signal-to-noise ratio. Differs from exist- ing rank-determining algorithms, the proposed method cares about the peaks but not the maximum of the normalized differ- ence, chooses the appropriate peak and determines the rank order together with the difference ratio of the singular value se- quence. In simulation experiments we found that for two similar peaks of the singular value difference,the one whose differ- ence ratio is smaller, is more appropriate to be the effective rank order. The proposed method can keep the waveform fea- ture of the desired signal and decrease distortion while de-noising.
作者 张全 李双田
出处 《信号处理》 CSCD 北大核心 2015年第8期949-955,共7页 Journal of Signal Processing
基金 863课题(2013AA063904-5)
关键词 瞬变电磁信号 奇异值分解 有效秩阶次 天电干扰 transient electromagnetic signal singular value decomposition effective rank order atmospherics
  • 相关文献

参考文献11

  • 1Reninger P A, Martelet G, Deparis J, et al. Singular val-ue decomposition as a de-noising tool for airborne time do-main electromagnetic data[ J] . Journal of Applied Geo-physics ,2011,75(2) ; 264-276.
  • 2Zehtabian A, Hassanpour H. Optimized singular vectorde-noising approach for speech enhancement [ J ]. IranicaJournal of Energy & Environment, 2011,2(2) : 166-180.
  • 3邹谋炎.反卷积与信号复原[J].北京:国防工业出版杜,2001, 200:143-144.
  • 4杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报,2001,19(3):368-371. 被引量:35
  • 5赵学智,叶邦彦,陈统坚.基于奇异值曲率谱的有效奇异值选择[J].华南理工大学学报(自然科学版),2010,38(6):11-18. 被引量:30
  • 6Hansen P S K, Hansen P C, Hansen S D, et al. Noise re-duction of speech signals using the rank-revealing ULLV de-composition [C]//Proc. EUSIPCO. 1996, 2: 967-970.
  • 7Jensen S H, Hansen P C, Hansen S D,et al. Reductionof broad-band noise in speech by truncated QSVD [ J ].Speech and Audio Processing, IEEE Transactions on,1995,3(6) : 439-448.
  • 8张军,吕雄,姚贵平.修正指数曲线模型参数估计的一种新方法[J].内蒙古农业大学学报(自然科学版),2012,33(Z1):285-290. 被引量:3
  • 9马金全,葛临东.基于Alpha稳定分布的大气噪声生成算法及其仿真[J].信息工程大学学报,2010,11(2):214-217. 被引量:5
  • 10Weron R. On the Chambers-Mallows-Stuck method forsimulating skewed stable random variables[ J]. Statistics& probability letters, 1996,28(2) : 165-171.

二级参考文献27

  • 1马金全,杜栓义,邱长兴,马金全.基于DSP的话音带宽短波信道模拟器[J].电子技术应用,2005,31(3):56-58. 被引量:2
  • 2屈梁生,孟建.机械故障诊断技术与当代前沿科学(二)[J].设备管理与维修,1996(1):25-28. 被引量:3
  • 3Mastrangelo J F.A new wideband high frequency channel simulation system[J].IEEE Transactions on Communications,1997,45(1):26-34.
  • 4Vogler L E,Hoffmeyer J A.A model for wideband HF propagation channels[J].Radio Science,1993,28(6):1131-1142.
  • 5Ahmed S M,Alzoubi Q,Abozahhad M.A hybrid ECG compression algorithm based on singular value decomposition and discrete wavelet transform[J].Journal of Medical Engineering and Technology,2007,31(1):54-61.
  • 6Shin K,Feraday S A,Harris C J,et al.Optimal autoregressive modelling of a measured noisy deterministic signal using singular value decomposition[J].Mechanical Systems and Signal Processing,2003,17(2):423-432.
  • 7Vanlanduit S,Cauberghe B,Guillaume P.Reduction of large frequency response function data sets using robust singular value decomposition[J].Computers and Structures,2006,84(12):808-822.
  • 8Bianchi T,Argenti F.SVD-based techniques for zero-padded block transmission over fading channels[J].IEEE Transactions on Signal Processing,2007,55(2):594-604.
  • 9Cempel C.Generalized singular value decomposition in multidimensional condition monitoring of machines:a proposal of comparative diagnostics[J].Mechanical Systems and Signal Processing,2009,23(3):701-711.
  • 10Yang W X,Peter W T.Development of an advanced noise reduction method for vibration analysis based on singular value decomposition[J].NDT&E International,2003,36(6):419-432.

共引文献67

同被引文献74

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部