期刊文献+

距离走动校正的距离空变分析与补偿 被引量:1

Range-Dependent Range Walk Correction Analysis and Compensation
下载PDF
导出
摘要 斜视角的距离空变导致距离走动校正存在距离空变。文中分析了距离走动校正距离空变对成像的影响,发现距离走动校正空变导致目标图像在近距端和远距端向反方向漂移。在前斜视SAR中,距离场景近端目标向左漂移若干像素,距离场景远端目标向右漂移若干像素。距离走动校正空变不仅造成场景的扭曲,在高分辨大斜视下还会使图像散焦。文中给出了距离走动校正距离空变补偿方法,所提方法可与常规的二次补偿结合进行,不会增加额外的计算负担。仿真结果与理论分析一致,距离走动校正空变补偿后,场景近端和远端目标均能较好聚焦,实测数据成像实验也与理论分析相符。从而表明距离走动校正空变分析是正确的,距离走动校正空变补偿方法是有效的。 Range-dependent squint angle cause range-dependent range walk correction. This paper analyzes the impact of range-dependent range walk correction to imaging, and found that range-dependent range walk correction causes the target image shift to the opposite direction at the near and far end. In forward squint-looking mode SAR imaging the near end tar- gets in range scene shift certain pixels to the left while the far end targets in range scene shift certain pixels to the right. Range-dependent range walk correction not only results in distortion of the scene, but also cause the image defocusing at high resolution high squint SAR system. This paper presents a compensation method for range-dependent range walk correc- tion. The proposed method operates with the second motion compensation and do not increase computation burden. Simula- tion results are similar to theoretical analysis, after compensation with range-dependent range walk correction, targets in near and far end of scene can focus well, the real data imaging experiments are also consistent with theoretical analysis. Thus indicating range-dependent range walk correction analysis is correct, and range-dependent range walk correction com- pensation method is effective.
出处 《信号处理》 CSCD 北大核心 2015年第8期962-967,共6页 Journal of Signal Processing
基金 国家自然科学基金(61271417)
关键词 合成孔径雷达 距离走动校正 距离空变 synthetic aperture radar(SAR) range walk correction range dependence
  • 相关文献

参考文献14

  • 1An D X,LI Y H,Huang XT, et al. Performance evalua-tion of frequency-domain algorithms for chirped low fre-quency UWB SAR data processing [ J ] . IEEE Journal ofSelected Topics in Applied Earth Observations and Re-mote Sensing,2014, 7(2): 678-690.
  • 2Sun G C, Xing M D, Liu Y,et al. Extended NCS basedon method of series reversion for imaging of highly squin-ted SAR[ J ] . IEEE Geoscience and Remote Sensing let-ters, 2011, 8(8): 446-450.
  • 3管金称,杨建宇,黄钰林,李文超.机载雷达前视探测方位超分辨算法[J].信号处理,2014,30(12):1450-1456. 被引量:7
  • 4Prats P, Marotti L, Wollstadt S, et al. TOPS interferom-etry with TerraSAH-X[ J] . IEEE Transactions on Geosci-ence and Remote Sensing, 2012, 50(8) : 3179-3188.
  • 5Wang Y, Li J W, Chen J,et al. A parameter-adjustingpolar format algorithm for extremely high sqint SAR ima-ging[ J ]. IEEE Transactions on Geoscience and RemoteSensing, 2014, 52( 1) : 640-650.
  • 6Xing M D, Wu Y F, Zhang Y D, et al. Azimuth resam-pling processing for highly squinted synthetic aperture ra-dar imaging with several modes [ J ] . IEEE Transactionson Geoscience and Remote Sensing, 2014, 52(7):4339-4352.
  • 7Sun G C, Jiang X W, Xing M D, et al. Focus improve-ment of highly squinted data based on azimuth nonlinearscaling [ J ] . IEEE Transactions on Geoscience and Re-mote Sensing, 2011, 49(6) : 2308-2322.
  • 8Liu G G,Zhang L R, Liu N,et al. Focusing HighlySquinted Data Using the Extended Nonlinear ChirpScaling Algorithm [ J ]. IEEE Geoscience and RemoteSensing letters, 2013, 10(2) : 342-346.
  • 9An D X,Huang X T, Jin T,et al. Extended nonlinearchirp scaling algorithm for high-resolution highly squintSAR data focusing[ J] . IEEE Transactions on Geoscienceand Remote Sensing, 2012,50(9) : 3595-3609.
  • 10Li D, Liao G S, Wang W, et al. Extended azimuth non-linear chirp scaling algorithm for bistatic SAR processingscience and Remote Sensing letters, 2014, 11(6) : 1134-1138.

二级参考文献31

  • 1范冲,龚健雅,朱建军.基于keren改进配准算法的POCS超分辨率重建[J].计算机工程与应用,2006,42(36):28-31. 被引量:10
  • 2禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 3O' Connell C B, Ross S T. Advances in super-resolution technology and application in biomedical research [ C ] // Proceedings of the SPIE BiOS, International Society for Optics and Photonics, 2012: 82280U-82280U-6.
  • 4Tsai R Y, Huang T S. Muhiframe image restoration and registration [ A ]. CT : JAI Press Inc, 1984 : 317-339.
  • 5Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections[J].JOSA A, 1989, 6(11) : 1715-1726.
  • 6Ogawa T, Haseyama M. Missing Intensity Interpolation Using a Kernel PCA-Based POCS Algorithm and its Ap- plications[J]. IEEE Transactions on Image Processing, 2011, 20(2) :417-432.
  • 7Gho S, Liu C, Kim D. Application of Low-Pass & High- Pass Reconstruction for Improving the Performance of the POCS Based Algorithm[ C ]//2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). Seoul, Korea: IEEE, 2011:1-3.
  • 8Krylov A, Nasonov A. Edge-directed image interpolation using color gradient information[ M ]. Image Analysis and Processing-ICIAP 2011. Springer. 2011 : 40-49.
  • 9Li X Q, Fang K L. Super-Resolution by POCS-SIFT Ap- proach[ J]. Applied Mechanics and Materials, 2014, 519 : 562 -567.
  • 10Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up ro- bust features[ M]. Computer Vision-ECCV 2006. Spring- er. 2006 : 404-417.

共引文献9

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部