期刊文献+

基于空间金字塔特征包的手势识别算法 被引量:4

Hand gesture recognition based on the spatial pyramid bag of features
下载PDF
导出
摘要 为了解决基于尺度不变特征变换的特征包(Bo F-SIFT)算法在描述手势图像特征时对特征点分布情况无法确定的问题,提出了空间金字塔特征包算法提取手势图像特征。该算法通过构造图像金字塔改善了传统的Bo FSIFT算法,生成的描述子能有效表征手势图像的局部特征和全局特征,并能表示图像特征点的分布特性。采用直方图相交核支持向量机进行手势识别。在标准数据库上的测试表明,该算法对于10种手语得到了92.92%的正确识别率,验证了算法的有效性。 A novel algorithm based on the spatial pyramid bag of features is proposed to describe the hand image. It is proposed in order to solve the problem that the distribution of feature points cannot be ascertained when using the hand gesture descriptor based on bag of feature of scale invariant feature transform( Bo FSIFT). The capability of the Bo F-SIFT can be improved by generating image spatial pyramid. The descriptor can effectively represent the posture by combining the global features and local features of the gesture image,as well as the distribution character of image feature points. Finally,the hand posture recognition is achieved by using the histogram intersection kernel support vector machine( SVM). The experiment on standard database demonstrates the average recognition rate can reach 92. 92 % for 10 kinds of gestures recognition,verifying the efficiency and effectiveness of the proposed algorithm.
出处 《智能系统学报》 CSCD 北大核心 2015年第3期429-435,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61103123)
关键词 手势识别 手势图像 尺度不变特征变换 空间金字塔 特征包 直方图相交核 支持向量机 hand gesture recognition hand gesture image scale invariant feature transform(SIFT) spatial pyramid bag of features histogram intersection kernel support vector machines(SVM)
  • 相关文献

参考文献17

  • 1隋云衡,郭元术.融合Hu矩与BoF-SURF支持向量机的手势识别[J].计算机应用研究,2014,31(3):953-956. 被引量:18
  • 2张良国,吴江琴,高文,姚鸿勋.基于Hausdorff距离的手势识别[J].中国图象图形学报(A辑),2002,7(11):1144-1150. 被引量:62
  • 3黄国范,毛红阁.基于切线距离的中国手指语字母手势识别[J].吉林化工学院学报,2013,30(3):79-81. 被引量:2
  • 4张汗灵,李红英,周敏.融合多特征和压缩感知的手势识别[J].湖南大学学报(自然科学版),2013,40(3):87-92. 被引量:8
  • 5丁友东,庞海波,吴学纯,魏小成.一种用于手势识别的局部均值模式纹理描述子[J].应用科学学报,2013,31(5):526-532. 被引量:1
  • 6DARDAS N H, GEORGANAS N D. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J]. IEEE Transaction on Instrumentation and Measurement, 2011, 60(11): 3592-3607.
  • 7JIANG Yugang, NGO C W, YANG Jun. Towards optimal bag-of-features for object categorization and semantic video retrieval[C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval. New York, USA, 2007: 494-501.
  • 8CHUANG Yuelong, CHEN Ling, CHEN Gencai. Hierarchical bag-of-features for hand gesture recognition[C]//Proceedings of 18th IEEE International Conference on Image Processing. Brussels, Belgium, 2011: 1777-1780.
  • 9LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 2169-2178.

二级参考文献84

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2殷涛,葛元,王林泉.基于几何矩的字母手势识别算法[J].计算机工程,2004,30(18):127-129. 被引量:11
  • 3郑勇涛,刘玉树.支持向量机解决多分类问题研究[J].计算机工程与应用,2005,41(23):190-192. 被引量:52
  • 4陈伟统,钱沄涛.基于粗糙集理论的网络入侵检测方法[J].计算机工程,2006,32(16):133-135. 被引量:11
  • 5Axelsson S.Intrusion detection systems:a survey and texonomy[EB/OL]. (2003) [2011-07-20].http://www.mnlab.cs.depaul.edu/seminar/spr2003/IDS Survey.pdf.
  • 6Chee Y,Rabaey J,Niknejad A.A class A/B low power amplifier for wireless sensor networks[C]//Proceedings of the 2004 International Symposium on Circuits and Systems, 2004: 409-412.
  • 7Kennedy J,Eberhart R.Particle Swarm Optimization[C]// IEEE International Conference on Neural Networks,Perth, Australia, 1995 : 1942-1948.
  • 8Eberhart R C,Shi Y.Particle swarm optimization:developments, applications and resources[C]//Proceedings of the Congress on Evolutionary Computation, 2001 : 81-86.
  • 9KDD Cup 99 KDD dataset[EB/OL]. [2011-06-16].http:// kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
  • 10Loo C,Ng M, Leckie C.Intrusion detection for routing attacks in sensor networks[J].Intemational Journal of Distributed Sensor Networks, 2006,2 (4) : 313 -332.

共引文献107

同被引文献26

  • 1张元元,李静,姜树明,杨子江,张江州.步态能量图的局部纹理特征分析方法[J].吉林大学学报(工学版),2013,43(S1):193-198. 被引量:3
  • 2衣治安,吕曼.基于多分类支持向量机的入侵检测方法[J].计算机工程,2007,33(15):167-169. 被引量:7
  • 3RAPTIS M, SIGAL L. Poselet key-framing: a model for human activity recognition [C]// CVPR 2013: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Reeognition. Washiugton, DC: IEEE Computer Society, 2013:2650-2657.
  • 4SI,IMANI K, BENEZETH Y, SOUAMI F. Human interaction recognition based on the co-oecurrence of visual words [C]//CVPRW 2014: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC: IEEE Computer Society, 2014:461 -466.
  • 5YUAN F, PRINET V, YUAN J. Middle-level representation for hu- man activities recognition: the role of spatio-temporal relationships [ C]// ECCV 2010: Proceedings of the l lst European Conference Computer Vision. Berlin: Springer, 2010: 168-180.
  • 6YUAN F, SAHBI H, PRINET V. Spatio-temporal context kernel for activity recognition [ C]//ACPR 2011 : Proceedings of the 1 st Asian Conference Pattern Recognition. Washington, DC: IEEE Computer Society, 2011 : 436 - 440.
  • 7YU T, KIM T, CIPOLLA R. Real-time action recognition by spatio- temporal semantic and structural forests [ C]// BMVC 2010: Pro- ceedings of the 21st British Machine Vision Conference. Durham, UK: BMVA Press, 2010: 1- 12.
  • 8LI N, CHENG X, GUO H, et al. A hybrid method for human interaction recognition using spatio-temporal interest points [ C]// ICPR 2014: Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway, NJ: IEEE, 2014:2513-2518.
  • 9PENG X, PENG Q, QIAO Y. Exploring dense trajectory feature and encoding methods for human interaction recognition [ C]// ICIMCS 2013: Proceedings of the 5th International Conference on Internet Multimedia Computing and Service. Piscataway, NJ: IEEE, 2013: 23 - 27.
  • 10NEDA A, ZOHREH A. A new approach to speed up in action rec- ognition based on key-frame extraction [C]//MVIP 2013: Proceedings of the 2013 8th Iranian Conference on Machine Vision and Im- age Processing. Washington, DC: IEEE Computer Society, 2013: 2166 - 6776.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部