期刊文献+

一种未知环境下机器人多目标跟踪算法 被引量:3

A robot multi-object tracking algorithm in unknown environments
下载PDF
导出
摘要 针对未知环境下移动机器人多目标跟踪问题,设计了一种基于联合概率数据关联的粒子滤波算法。该算法利用联合概率数据关联方法对Rao-Blackwellized粒子滤波算法进行改进,使机器人能够完成未知环境条件下对自身状态、环境特征状态和多目标状态的在线联合估计。算法将系统状态变量分为代表多目标、环境特征状态的线性变量和代表机器人状态的非线性变量,并利用联合概率数据关联Kalman滤波和粒子滤波对系统状态进行更新。通过仿真实验证明了该算法对机器人状态、环境特征状态以及多目标状态的估计准确性,验证了算法对未知环境下多目标的跟踪能力。 In this paper,a particle filtering algorithm based on the joint integrated probabilistic data association( JIPDA) is proposed in order to solve the problem of motile robot multi-object tracking in unknown environments.The Rao-Blackwellized particle filtering is reconstructed based on the JIPDA in the new algorithm. It allows the robot to estimate joint states of itself,environment features and multi-object states simultaneously. The algorithm divides the system variables into two parts: the lineal variable representing multi-object and environment feature states,and the non-linear variable representing robot states. The system state is updated by JIPDA Kalman filtering and particle filtering. Estimation precision of robot states,environment feature states and multi-object states is verified by simulation results,verifying the ability of multi-object tracking in unknown environments.
出处 《智能系统学报》 CSCD 北大核心 2015年第3期448-453,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61202332) 陕西省自然科学基础研究计划项目(2013JQ8030)
关键词 机器人 同时定位与地图构建 多目标跟踪 粒子滤波 联合概率数据关联 Rao-Blackwellised粒子滤波 Kal-man滤波 robot simultaneous localization and mapping(SLAM) multi-object tracking particle filtering joint integrated probabilistic data association(JIPDA) Rao-Blackwellized particle filtering Kalman filtering
  • 相关文献

参考文献9

  • 1VU T D, AYCARD O, APPENRODT N. Online localization and mapping with moving object tracking in dynamic outdoor environments[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Istanbul, Turkey, 2007: 190-196.
  • 2VIDAL R, RASHID S, SHARP C, et al. Pursuit-evasion games with unmanned ground and aerial vehicles[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001: 2948-2955.
  • 3HUANG Feifei, WANG Long, WANG Qining, et al. Coordinated control of multiple mobile robots in pursuit-evasion games[C]//Proceedings of American Control Conference. St. Louis, USA, 2008: 2861-2866.
  • 4WANG C C, THORPE C. Simultaneous localization and mapping with detection and tracking of moving objects[C]//Proceedings IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002: 2918-2924.
  • 5BORRMANN D, ELSEBERG J, LINGEMANN K, et al. Globally consistent 3D mapping with scan matching[J]. Robotics and Autonomous Systems, 2008, 56(2): 130-142.
  • 6WANG C C, THORPE C, THRUN S, et al. Simultaneous localization, mapping and moving object tracking[J]. The International Journal of Robotics Research, 2007, 26(9): 889-916.
  • 7WAN Kaowei, WANG C C, TON T T. Weakly interacting object tracking in indoor environments[C]//Proceedings of the IEEE International Conference on Advanced Robotics and Its Social Impacts. Taipei, China, 2008: 1-6.
  • 8伍明,孙继银.基于扩展式卡尔曼滤波的移动机器人未知环境下动态目标跟踪[J].机器人,2010,32(3):334-343. 被引量:9
  • 9MU?ICKI D, EVANS R. Joint integrated probabilistic data association-JIPDA[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 1093-1099.

二级参考文献20

  • 1Newman P. On the structure and solution of the simultaneous localization and map building problem[D]. Australian: University of Sydney, 1999.
  • 2Montemerlo M, Thrun S, Koller D, et al. Fast-SLAM: A factored solution to the simultaneous localization and mapping problem[C]//AAAI National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI, 2002: 593-598.
  • 3Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 4Fu L, Milios E. Robot pose estimation in unknown environments by matching 2D range scans[J]. Journal of Intelligent and Robotic Systems, 1997, 18(3): 249-275.
  • 5Minguez J, Lamiraux F, Montesano L. Metric-based scan matching algorithms for mobile robot displacement estimation [C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 3557-3563.
  • 6Wang C C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 2918-2924.
  • 7Wang C C, Thorpe C, Thrun S. Online simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 842-849.
  • 8Borrmann D, Elseberg J, Lingemann K, et al. Globally consistent 3D mapping with scan matching[J]. Robotics and Autonomous Systems, 2008, 56(2): 130-142.
  • 9Arras K O. Feature-based robot navigation in known and unknown environments[D]. Switzerland: Federal Institute of Technology Lausanne, 2003.
  • 10Campion G, Bastin G, D'Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 47-62.

共引文献8

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部