期刊文献+

一种改进的自适应步长的人工萤火虫算法 被引量:10

An improved adaptive step glowworm swarm optimization algorithm
下载PDF
导出
摘要 在基本的人工萤火虫算法(GSO)中,萤火虫的固定移动步长导致算法容易陷入局部最优并可能出现函数适应值的震荡现象。在一些自适应步长的人工萤火虫算法(A-GSO)中,算法迭代过程中会出现一些萤火虫的邻域集合为空集的现象,这将导致算法收敛速度降低并陷入局部最优值。为此,设计了改进的自适应步长的人工萤火虫算法(FA-GSO),改进的算法针对邻域无同伴的萤火虫引入觅食行为寻找优化方向并自适应调整移动步长,进一步提高求解精度和稳定性,并给出了算法的收敛性分析,结合GSO、A-GSO 2种算法对多个标准测试函数进行寻优并提取相关指标。通过指标对照,验证了FA-GSO算法的有效性,表明算法可以改善函数寻优的精度并提高迭代速度。 In the basic glowworm swarm optimization ( GSO) , it is easy to fall into local optimum and the oscillation phenomenon of function adaptive values may occur because of the fixed step length. In some adaptive?step glowworm swarm optimization ( A?GSO) algorithms, neighborhood sets of some fireflies may be empty in the iterative process of the algorithm, which leads to lower convergence speed and falls into local optimal value. Therefore, an improved foraging?behavior adaptive?step GSO ( FA?GSO) algorithm was designed. The foraging behavior of the fireflies with?out neighborhood peer and adaptive step is introduced in order to find the optimization direction in the improved al?gorithm. The precision, stability, and global convergence analysis of FA?GSO is presented. After extracting and comparing the relevant optimization indicators of GSO, A?GSO and FA?GSO by several standard test functions, the effectiveness of the FA?GSO algorithm was verified, which indicates that the improved algorithm can improve the accuracy of function optimization and the iteration speed.
出处 《智能系统学报》 CSCD 北大核心 2015年第3期470-475,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61374191) 国家"863"计划资助项目(2012AA112401) "十二五"国家科技支撑计划课题专项经费资助项目(2014BAG03B01)
关键词 人工萤火虫算法 自适应步长 觅食行为 全局收敛性 glowworm swarm optimization adaptive step foraging behavior global convergence
  • 相关文献

参考文献11

  • 1LIAO Wenhua, KAO Yucheng, LI Yingshan. A sensor de- ployment approach using glowworm swarm optimization algo- rithm in wireless sensor networks [J]. Expert Systems with Applications, 38(10) : 12180-12188.
  • 2KRISHNANAND K N D, GHOSE D. Glowworm swarm based optimization algorithm for muhimodal functions with collective robotics applications [J]. Multiagent and Grid Systems, 2006, 2(3) 209-222.
  • 3KRISHNANAND K N, GHOSE D. Glowworm swarm optimi- zation for simultaneous capture of multiple local optima of multimodal functions[J]. Swarm Intelligence, 2009, 3 (2) : 87-124.
  • 4YANG Yan, ZHOU Yongquan, GONG Qiaoqiao. Hybrid ar- tificial glowworm swarm optimization algorithm for solving system of nonlinear equations [J]. Journal of Computational Information Systems, 2010, 6(10) 3431-3438.
  • 5黄正新,周永权.自适应步长萤火虫群多模态函数优化算法[J].计算机科学,2011,38(7):220-224. 被引量:19
  • 6欧阳喆,周永权.自适应步长萤火虫优化算法[J].计算机应用,2011,31(7):1804-1807. 被引量:58
  • 7KRISHNANAND K N D, GHOSE D. Glowworm swarm opti- mization : a new method for optimizing multi-modal functions [J]. Computational Intelligence Studies, 2009, 1 ( 1 ) : 93- 119.
  • 8张军丽,周永权.人工萤火虫与差分进化混合优化算法[J].信息与控制,2011,40(5):608-613. 被引量:17
  • 9刘洲洲,王福豹,张克旺.基于改进萤火虫优化算法的WSN覆盖优化分析[J].传感技术学报,2013,26(5):675-682. 被引量:17
  • 10张慧斌,王鸿斌,胡志军.PSO算法全局收敛性分析[J].计算机工程与应用,2011,47(34):61-63. 被引量:21

二级参考文献55

共引文献113

同被引文献86

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部