期刊文献+

融合Kernel PCA形状先验信息的变分图像分割模型 被引量:2

Variational image segmentation incorporating Kernel PCA-based shape priors
原文传递
导出
摘要 目的基于能量最小化的变分图像分割方法已经受到研究人员的广泛重视,取得了丰硕成果。但是,针对图像中存在的噪音污染、目标被遮挡等情况,则难以正确分割。引入先验形状信息是解决该问题的一个重要方向,但是随之而带来的姿态变化问题是一个难点。传统的做法是在每步迭代过程中单独计算姿态变换参数,导致计算量大。方法在基于Kernel PCA(KPCA)的形状先验模型基础上,提出一种具有内在的姿态不变性的KPCA形状先验模型,并将之融合到C-V变分图像分割模型中。结果提出模型无须在每步迭代中显式地单独计算姿态变换参数,相对于C-V模型分割正确率能够提高7.47%。同时,针对KPCA模型中计算高斯核函数的参数σ取值问题,也给出一种自适应的计算方法。结论理论分析及实验表明该模型能较好地解决先验形状与目标间存在的仿射变化问题,以及噪音、目标被遮挡等问题。 Objective Variational image segmentation methods, which are based on energy minimization process, have received significant attentions for years and gained fruitful achievements. However, the use of image information alone often leads to poor segmentation and results in presence of noise, clutter, or occlusion. Introducing shape prior to contour evolu- tion process has been shown as an effective way to address these problems. However, problems associated with this method is nontrivial. The traditional solution is to estimate several pose parameters within each step of level set iteration. This solution is complicated and time consuming. Method Based on the kernel principal component analysis (KPCA) shape model, we propose a novel KPCA-based shape prior model with intrinsic pose invariance, and we then combine it with C-V image segmentation model. Result The complete segmentation model explicitly eliminates pose parameter estimation during level set iteration. Furthermore, segmenting correct ratio is increased by 7.47% compared with C-V model. We present an adap- tive method to calculate parameter ofor the Gaussian kernel in KPCA shape model. Conclusion Experimental results show the robustness of the combined model against noise, clutter, or occlusion and the ability to deal with the affine pose variance between prior shapes and object to be detected.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第8期1035-1041,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(41171338 41471280)
关键词 图像分割 变分方法 形状先验 核主成分分析(Kernel PCA) 姿态不变性 image segmentation variational method shape priors Kernel PCA pose invariance
  • 相关文献

参考文献17

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J].Int. J. Comput. Vis., 1988, 1(4): 321-331.[DOI: 10.1007/BF00133570].
  • 2Zheng Q, Dong E, Cao Z, et al. Active contour model driven by linear speed function for local segmentation with robust initialization and applications in MR brain images[J]. Signal Processing, 2014, 97: 117-133.[DOI: 10.1016/j.sigpro.2013.10.008].
  • 3Liu W, Shang Y, Yang X. Active contour model driven by local histogram fitting energy[J]. Pattern Recognit. Lett., 2013, 34: 655-662.[DOI: 10.1016/j.patrec.2013.01.005].
  • 4Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. Int. J. Comput. Vis., 1997, 22(1): 61-79.
  • 5Wang Y, Xiang S, Pan C, et al. Level set evolution with locally linear classification for image segmentation[J]. Pattern Recognit., 2013, 46: 1734-1746.[DOI: 10.1016/j. patcog. 2012. 12. 006].
  • 6Liu L, Zeng L, Shen K, et al. Exploiting local intensity information in C-V model for noisy image segmentation[J]. Signal Processing, 2013, 93: 2709-2721.[DOI: 10.1016/j. sigpro. 2013. 03. 035].
  • 7Chan T, Zhu W. Level set based shape prior segmentation[C]//Proceedings of IEEE Computer Society Conference on CVPR’05. Washington DC; IEEE, 2005,2: 1164-1170.[DOI: 10. 1109/CVPR. 2005. 212].
  • 8Chan T, Vese L. Active contours without edges[J]. IEEE Trans. image Process., 2001, 10(2): 266-277.[DOI: 10. 1109/83. 902291].
  • 9Leventon M, Grimson W, Faugeras O. Statistical shape influence in geodesic active contours[C]//Proceedings of IEEE Conference on CVPR’2000. Washington DC: IEEE, 2000, 1: 316-323. [DOI: 10.1109/CVPR.2000.855835].
  • 10Yan P, Zhang W, Turkbey B, et al. Global structure constrained local shape prior estimation for medical image segmentation[J]. Comput. Vis. Image Underst., 2013, 117(9): 1017-1026.[DOI: 10.1016/j.cviu.2013.03.006].

二级参考文献16

  • 1Chan T, Zhu W. Level set based shape prior segmentation[ C ]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego:lnstitule of Electrical and Electronics Engineers Computer Society, 2005:1164-1170.
  • 2Teboul O, Simon L, Koutsourakis P, et al. Segmentation ofbuilding facades using procedural shape priors [ C ]//Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego: Institute of Electrical and Electronics Engineers Computer Society, 2010: 3105-3112. [ DOI: 10. 1109/CVPR. 2010. 5540068 ].
  • 3Lei Z, Qiang J. A level set-based global shape prior and its application to image segmentation[ C ]//Proceedings of Computer Vision and Pattern Recognition Workshops. Miami: IEEE Com- puter Society, 2009: 17-22. [DOI: 10. ll09/CVPR. 2009. 5204275 ].
  • 4Leventon M, Grimson W, Faugeres O. Statistical shape influence in geodesic aetive contours [ C ]//Proceedings of IEEE Interna- tional Conference on Computer Vision and Pattern Recognition. Hilton Head Island: IEEE Computer Society, 2000, 316-323.
  • 5Tsai A, Yezzi A J, Willsky A S. A shape-based approach to the segmentation of medical imagery using level sets [ J ]. IEEE Trans. on Medical Imaging, 2003,22(2) :137-154. [DOI: 10. 1109/TMI. 2002. 808355 ].
  • 6Bresson X, Vandergheynst P, Thiran J P. A variatioal model for object segmentation using boundary information and shape prior driven by the Murnford-Shah functional [J]. Int. J. Computer Vision, 2006, 68: 145-162.
  • 7Liu Z H, Chen B, Chen W S. Shape prior extracted by 2D-PCA for intensity-based image segmentation [ C ]// Proceedings ofWavelet Analysis and Pattern IEEE, 2011: 65-68. [ DOI: 6014489 ].
  • 8Recognition. Guilin, China 10. ll09/ICWAPR. 2011 Chen F, Yu H, Hu R. Simultaneous variational image segmenta- tion and object recognition via shape sparse representation [ C ]// Proceedings of International Conference on Image Processing. Hong Kong, China: IEEE Computer Society, 2010 : 3057-3060. [ DOI: 10.1109/ICIP. 2010. 5654176].
  • 9Cremers D, Kohlberger T, Schnoerr C. Shape statistics in kernel space for variational image segmentation [ J ]. Pattern Recogni- tion, 2003, 36 : 1292-1943. [ DOI : 10. 1016/S0031-3203 (03) 00056-6].
  • 10Cremers D, Osher S, Soatto S. Kernel density estimation and in- trinsic alignment for knowledge-driven segmentation: teaching level sets to walk [ C]//The 26th DAGM Pattern Recognition Symp. Berlin, Germany: Springer, 2004: 36-44. [DOI: 10. 1007/978-3-540-28649-3_5 ].

共引文献2

同被引文献26

  • 1姚红革,王诚,喻钧,白小军,李蔚.复杂卫星图像中的小目标船舶识别[J].遥感学报,2020,24(2):116-125. 被引量:16
  • 2Rada L, Chen K. A new variational model with dual level set functions for selective segmentation [ J ]. Communications in Computational Physics, 2012, 12 ( 1 ) : 261-283. [ DOI: 10. 4208/ciep. L90L L 1.2L0611 a].
  • 3Mandal D, Chatterjee A, Maitra M. Robust medical image seg- mentation using particle swarm optimization aided level set based global fitting energy active contour appruacb [ J ]. Engineering Applications of Artificial l,telligence, 2014, 35: 199-214. [ DOI : 10.1016/j. engappai. 2014.07.001 ].
  • 4Benamou J D, Carlier G, Cuturi M, et al. lterative bregman pro- jections for regularized transportation problems[ J ]. SlAM Journal on Scientific Computing, 2015, 2(37): A1111-Al138. [DOI: 10.1137/141000439 ].
  • 5Narkhede P R, Gokh',de A V. Color inmge segmentation using edge detection and seeded region growing approach for CIELab and HSV color spaces[ C ]//Proceedings of International Confer- ence on Industrial Instrumentation and Control. Pune: IEEE, 2015: 1214-1218. [DOI: 10.1109/iic. 2015.7150932].
  • 6Chan T F, Esedoglu S, Nikolova M. Algorithms for finding glob- al minimizers of image segmentation and denoising models [ J ]. SIAM Journal on applied Mathematics, 2006, 66 ( 5 ) : 1632- 1648. [ DOI: 10. 1137/040615286].
  • 7Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Com- munications on Pure and Applied Mathematics, 1989, 42 (5) : 577-685. [DOI: 10. 1002/cpa. 3160420503 ].
  • 8Chan T, Vese L. An active contour model without edges[C]//Pro- ceedings of the 2nd International Conference. Berlin Heidelberg: Springer, 1999: 141-151. [DOI: 10. 1007/3-540-48236-9_13].
  • 9Chan T E, Vese L. A level set algorithm for minimizing the Mumford-Shah functional in image processing [ C ]//Proceedings of IEEE Workshop on Variational and Level Set Methods in Com- puter Vision. Vancouver, BC Canada: IEEE, 2001: 161-168. [ DOI : 10.1109/vlsm. 2001. 938895 ].
  • 10Goldstein T, Osher S. The split Bregman method for Ll-regular- ized problems [ J ]. SIAM Journal on Imaging Sciences, 2009, 2(2) : 323-343. [DOI: 10. 1137/080725891 ].

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部