期刊文献+

基于2维灰度熵阈值选取快速迭代的图像分割 被引量:5

Image segmentation based on the fast iteration for two-dimensional gray entropy threshold selection
原文传递
导出
摘要 目的为了使图像阈值分割的精度和速度进一步提高,提出了一种基于2维灰度熵阈值选取快速迭代的图像分割方法。方法首先,提出了1维灰度熵阈值选取的快速迭代算法;然后,考虑图像目标和背景的类内灰度均匀性,给出了基于灰度—邻域平均灰度级直方图的灰度熵阈值选取准则;最后,提出了2维灰度熵阈值选取的快速迭代算法,并采用递推方式计算准则函数中的中间变量,避免其重复运算,加快了运算速度,大大减少了运算量。结果大量实验结果表明,与近年来提出的3种阈值分割法相比,所提出的方法分割性能更优,分割后的图像中目标区域完整,边缘清晰,细节丰富且运行时间短,仅为基于混沌小生境粒子群优化的二维斜分倒数熵分割法运行时间的3%左右。结论本文方法对不同类型灰度级图像的分割效果及运行速度均有明显优势,是实际系统中可选择的一种快速有效的图像分割方法。 Objective To further improve the accuracy and speed of image threshold segmentation, an image segmentation method is proposed based on fast iteration for two-dimensional gray entropy threshold selection. Method First, a fast itera-tive algorithm for threshold selection that uses one-dimensional gray entropy is proposed. Gray level uniformity within the object cluster and background cluster is then considered, and two-dimensional gray entropy criterion for threshold selection based on gray level-neighborhood average gray level histogram is presented. Finally, a fast iterative algorithm for threshold selection that uses two-dimensional gray entropy is proposed. In addition, recursive algorithms are adopted to calculate the intermediate variables involved in criterion function, thereby avoiding their repetitive computation. Thus, calculating speed is accelerated and calculation amount is greatly reduced. Result A large number of experimental results show that, com- pared with three threshold segmentation methods, which have been recently presented, the proposed method has superior image segmentation performance. In the segmented image, object region is complete, edges are clear, and details are rich. Moreover, running time is short and is only approximately 3% of the running time of reciprocal entropy thresholding method with two-dimensional histogram oblique division based on niche chaotic mutation particle swarm optimization. Conclusion The proposed method has obvious advantages in segmentation results and algorithmic running speed for various gray level images. It is a fast and effective segmentation method that can be used in practical systems.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第8期1042-1050,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(60872065) 港口航道泥沙工程交通行业重点实验室开放基金 长江科学院开放基金(CKWV2013225/KY) 水利部黄河泥沙重点实验室开放基金(2014006) 城市水资源与水环境国家重点实验室开放基金(LYPK201304) 煤矿安全高效开采省部共建教育部重点实验室(JYBSYS2014102) 江苏高校优势学科建设工程资助
关键词 图像分割 阈值选取 灰度熵 快速迭代 image segmentation threshold selection gray entropy fast iteration
  • 相关文献

参考文献20

  • 1Sanyal N, Chatterjee A, Munshi S. An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation [J]. Expert Systems with Applications, 2011, 38(12):15489-15498. [DOI: 10.1016/j.eswa.2011.06.011].
  • 2Mayszko D, Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding [J]. Information Sciences, 2010, 180(7):1138-1158. [DOI: 10.1016/j.ins. 2009.11.034].
  • 3Ranjani J J, Thiruvengadam S J. Fast threshold selection algorithm for segmentation of synthetic aperture radar images [J]. IET Radar, Sonar & Navigation, 2012, 6(8):788-795. [DOI: 10.1049/iet-rsn.2011.0341].
  • 4何志勇,孙立宁,黄伟国,陈立国.基于Otsu准则和直线截距直方图的阈值分割[J].光学精密工程,2012,20(10):2315-2323. 被引量:35
  • 5吴一全,吴诗婳,张晓杰.利用混沌PSO或分解的2维Tsallis灰度熵阈值分割[J].中国图象图形学报,2012,17(8):902-910. 被引量:17
  • 6Yu J, Chen P, Yin X F. Two-dimensional Tsallis entropy threshold segmentation based on decomposition [J]. Journal of Computational Information Systems, 2013, 9(13):5379-5386. [DOI: 10.12733/jcis6497].
  • 7张弘,范九伦.二维Arimoto熵直线型阈值分割法[J].光子学报,2013,42(2):234-240. 被引量:16
  • 8Tang K Z, Yuan X J, Sun T K, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm [J]. Knowledge-Based System, 2011, 24(8):1131-1138. [DOI: 10.1016/j.knosys.2011.02.013].
  • 9Kapur J N, Sahoo P K, Wong A K C. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(3):273-285. [DOI: 10.1016/0165-1 684(80)90020-1].
  • 10Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropy [J]. Pattern Recognition, 1989, 47(1):22-32. [DOI: 10.1016/0734-189 X(89)90051-0].

二级参考文献104

共引文献166

同被引文献38

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部