期刊文献+

各向异性分层介质电磁场并矢Green函数的混合算法

A Hybrid Algorithm for Calculating of Dyadic Green's Function in Layered Anisotropic Medium
下载PDF
导出
摘要 提出一种兼顾精度与效率且不受参数范围限制的各向异性分层介质电磁场并矢Green函数的混合算法,并研究其在求解层状介质电磁响应中的应用。首先给出四种场型并矢Green函数在均匀各向异性介质中的闭合解析解以及在层状各向异性介质中的Sommerfeld积分表示,并重点考察了场源横向距离为零时的解;然后通过对比分析Sommerfeld积分的各种计算方法的优缺点及适用条件,得到一种根据参数范围自动选配最优计算方案的混合算法,并研究了特殊几何模型情况下全空间上并矢Green函数的高效计算问题;最后利用所提出的算法考察了层状各向异性介质背景下偶极子的辐射等实际问题。 In this paper, a hybrid algorithm is developed, which is not only compatible for precision and efficiency but also independent of bound of arguments for calculating of dyadic Green's function in a layered anisotropic earth; and its applications for computation of electromagnetic response in layered earth are studied. Firstly, entire analytic solutions in homogeneous anisotropic earth and expression of Sommerfeld integrals in layered anisotropic earth for four kinds of field dyadic Green's functions are given. Especially, the solution for the case of the distance of receiver and transmitter being zero is investigated. Characteristic and suited conditions of some usual computational methods of Sommerfeld inte- grals are analyzed and contrasted. Then a hybrid algorithm of matching optimal methods is obtained due to the range of arguments, and the efficient method of calculating dyadic Green's functions for whole space in special geometrical model is studied. Furthermore, the radiation of dipole in a layered anisotropic earth is investigated.
出处 《长春理工大学学报(自然科学版)》 2015年第4期138-143,158,共7页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助(41004042 41404109)
关键词 混合算法 并矢Green函数 Sommerfeld积分 各向异性介质 hybrid algorithm dyadic Green's function Sommerfeld integrals anisotropic medium
  • 相关文献

参考文献21

  • 1Michiels B, Fostier J, Bogaert I, et al. Full-wave simulations of electromagnetic scattering problems with billions of unknowns [J]. IEEE Transactionson Antennas and Propagation, Publication, 2015, 63 (2) :796-799.
  • 2Wiedenmann O, Eibert T F. A domain decomposi- tion method for boundary integral equations using a transmission condition based on the near-zone cou- plings[J].IEEE Transactions on Antennas and Prop- agation,2014,62(8) :4105-4114.
  • 3Markkanen J, Yla Oijala P. Discretization of electric current volume integral equation with piecewise lin- ear basis functions [J] .IEEE Transactions on Anten- nas and Propagation, 2014,62 (9) : 4877-4880.
  • 4Xiong Zonghou. Induced-polarization and electro- magnetic modeling of a three-dimensional body bur- ied in a two-layer anisotropic earth[J].Geophysics, 1986,51(12) :2235-2246.
  • 5Micalski K A, Mosig J R. Multilayered media Green's functions in integral equation formulations [J].IEEE transactions on antennas and propagation, 1997,45(3) :508-519.
  • 6Sommerfeld A. Partial differential equations in physics[A]. New York:Academic, 1949.
  • 7Cui T J. Fast evaluation of Sommerfeld integrals for EM wave scattering and radiation by three-di- mensional buried objects [J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (3) : 887-900.
  • 8Anderson W L. Fast Hankel Transforms using re- lated and lagged convolutions[J].ACM Transactions on Mathematical Software, 1982,8(4) : 344-368.
  • 9Aksun M I. A robust approach for the derivation of closed form green functions[J].IEEE Trans. Mi- crowave Theory Tech, 1996,44(5) :651-658.
  • 10Tai C T.Dyadic Green's Functions in Electromag- netic Theory[A]. 2nd ed. IEEE Press,New York, 1993.

二级参考文献2

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部