期刊文献+

基于改进GA参数优化的SVR股价预测模型 被引量:4

Stock Price Prediction Model Based on SVR with Parameters Optimized by Improved GA
下载PDF
导出
摘要 针对股票价格的动态性及非线性等特点,提出了基于改进遗传算法(Genetic Algorithm,GA)优化参数的支持向量回归机(Support Vector Regression,SVR)股价预测模型.首先将选取的股票价格样本进行小波去噪处理,然后将经过改进GA优化参数的SVR模型对去噪后的数据进行预测及评价.结果证明,改进小波-GA-SVR模型具有良好的预测效果,对股票价格的预测研究具有一定的意义. Aiming to the dynamics and nonlinearities of stock price, a stock price prediction model that based on support vector regression(SVR) with parameters optimized by improved genetic algorithm(GA) was proposed. First, the wavelet was used to de-noise the samples of stock price. Then the SVR model whose parameters were optimized by improved GA was utilized to predict and assess the data de-noised by wavelet. The result demonstrated that the improved wavelet-GA-SVR model has good prediction effect, and it is significant to the study of the prediction of stock price.
出处 《计算机系统应用》 2015年第9期29-34,共6页 Computer Systems & Applications
基金 国家自然科学基金(61179011) 福建自然科学基金(2010J01327)
关键词 小波去噪 遗传算法 支持向量机回归 股价预测 wavelet denoising genetic algorithm(GA) support vector regression(SVR) stock price prediction
  • 相关文献

参考文献10

二级参考文献32

共引文献35

同被引文献35

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部