期刊文献+

一类延迟微分方程Rosenbrock方法的数值Hopf分支

Numerical Hopf bifurcation of Rosenbrock methods for a Class of Delay Differential Equations
下载PDF
导出
摘要 本文应用Rosenbrock方法将一类d维的含参数的延迟微分系统离散化,得到相应的数值离散系统。证明了如果原系统存在Hopf分支,则相应的数值离散系统Hopf分支的分支方向和不变曲线的稳定性分别与原系统的分支方向和周期解的稳定性相同。并由数值试验进一步验证了理论分析的结论。 A class of delay differential equations with parameter is considered. Applying the Rosenbrock methods to the system,the corresponding numerical discrete system is obtained. It is proved that if the original system undergoes a Hopf bifurcation,the direction and the stability of the invariant curve of the numerical discrete system are the same as that of the original syetem. Numerical experiment further confirms the theoretical results of numerical analysis.
出处 《长春师范大学学报》 2015年第8期7-9,共3页 Journal of Changchun Normal University
关键词 延迟微分方程 ROSENBROCK方法 HOPF分支 delay diffenrential equations Rosenbrock methods Hopf bifurcation
  • 相关文献

参考文献7

  • 1Ford N J, Wulf V. Numerical Hopf bifurcation for the delay logistic equation [R]. Manchester Center for Computational Mathe- matics : Technical Report, 1998,323.
  • 2Zhang Chunrui, Liu Mingzhu, Zheng Baodong. Hopf bifurcation in numerical approximation of a class delay differential equations [J]. Appl Math Comput ,2003,146:335 - 349.
  • 3Qiubao Wang, Dongsong Li. Numerical Hopf bifurcation of Runge - Kutta methods for a class of delay differential equations [J]. Chaos, Solitons and Fractals, 2009,42 : 3087 - 3099.
  • 4M. Z. Liu, Qiuhao Wang. Numerical Hopf bifurcation of linear muhistep methods for a class of delay differential equations [J]. Applied Mathematics and Computation,2009,208:462-474.
  • 5Hassard BD, Kazarinoff ND, Wa YH. Theory and applications of Hopf bifurcation [M]. Cambridge : Cambridge University Press, 1981.
  • 6Wulf V, Ford NJ. Numerical Hopf bifurcation for a class of delay differential equations [J]. J Comput Appl Math, 2000,115 : 601 - 616.
  • 7马占平.几类非线性生物数学模型的动力学行为研究[D].兰州:兰州理工大学,2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部