期刊文献+

红外监控图像红眼检测与消除 被引量:4

Detection and elimination of red-eye in infrared monitoring images
下载PDF
导出
摘要 主动式红外摄像机在夜视监控视频中极易出现红眼效应,在图像中留下明显的亮圆斑。针对此缺陷,提出一种自动红眼检测与消除算法。首先对红外夜视监控图像进行边缘检测和形态学闭运算,形成连通域;然后通过分析亮圆斑的几何特征提出三个限制条件,筛选出红眼所在的连通域,输出红眼掩膜;最后对红眼区域用灰度替换和平滑滤波方法进行消除处理。该方法无需人脸检测,无需利用色彩信息,实验结果表明,红眼消除效果良好,速度快,为红外灰度图像优化提供了有效的方法。 Since red-eye effect is liable to appear in night vision monitoring video of active infrared camera,the obvious bright and round spots will be left in digital images. For this defect,an algorithm which can detect and eliminate red-eye automatically is proposed. The edge detection and morphological closed operation of monitoring image of infrared night vision were conducted to form connecting areas. Then three constraints are put forward by analyzing the geometric features of the bright spots to select connecting areas that the red-eye are locating,and output red eye mask. The red eye areas are eliminated by using the methods of grayscale replacement and smoothing filtering. There is no need to detect human face and use color information for this method. The experimental results show that the proposed method can eliminate red-eye fast and effectively,which provides an effective method for the optimization of infrared grayscale images.
出处 《现代电子技术》 北大核心 2015年第17期65-67,共3页 Modern Electronics Technique
基金 广东省教育部产学研结合项目(2012B091000068)
关键词 红眼效应 红外监控摄像机 红眼定位 红眼消除 red-eye effect infrared monitoring camera red-eye location red-eye elimination
  • 相关文献

参考文献17

  • 1HUTCHINSON T E, WHITE K P, MARTIN W N, et al. Hu- man-computer interaction using eye-gaze input [J]. IEEE Tran- sactions on Systems, Man and Cybernetics, 1989, 19(6): 1527- 1534.
  • 2张昌明,童卫青,王燕群.一种高性能近红外光人脸检测和眼睛定位算法[J].计算机系统应用,2011,20(4):96-101. 被引量:2
  • 3RIZON M, KAWAGUCHI T. Automatic eye detection using in- tensity and edge information [C]// Proceedings of 2000 IEEE In-ternational Conference on TENCON. [S.I.]: IEEE, 2000, 2: 415 -420.
  • 4YOO S, PARK R H. Red-eye detection and correction using in painting in digital photographs [J]. IEEE Transactions on Con- sumer Electronics, 2009, 55(3) : 1006-1014.
  • 5CHEN Yongsheng, SU Chanhung, CHEN Jiunhung, et al. Vi- deo-based real time eye tracking technique for auto stereoscopic displays [C]// Proceedings of 2000 the 5th IEEE International Conference on Artificial Intelligence and Applications. Taibei, China: IEEE, 2000: 188-193.
  • 6GAUBATZ M, ULICHNEY R. Automatic red-eye detection and correction [C]// Proceedings of 2002 IEEE International Conference on Image Processing. [S.1.]: IEEE, 2002. 1: 804- 807.
  • 7ALl T, KHATTAK S, KIM I. Automatic red-eye effect removal using combined intensity and color information [J]. Journal of Imaging Science, 2011, 59( 1 ) : 8-16.
  • 8陈春波,王元庆.基于红眼效应的人眼探测[J].计算机工程与应用,2007,43(9):198-200. 被引量:4
  • 9MORIMOTO C H, KOONS D, AMIR A, et al. Pupil detection and tracking using muhiple light sources [J]. Image and Vision Computing, 2000, 18(4): 331-335.
  • 10ZHAO S Y, GRIGAT R R. An automatic face recognition sys- tem in the near infrared spectrum [C]// Proceedings of 2005 the 4th International Conference on Machine Learning and Da- ta Mining in Pattern Recognition. Leipzig: Springer, 2005: 437-444.

二级参考文献43

  • 1山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 2路明,赵群飞,施鹏飞.一种自动红眼消除方法[J].电路与系统学报,2006,11(6):124-128. 被引量:2
  • 3ROWLEY H A,BALUJA S,KANADE T.Neural network-based face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38.
  • 4OSUNA E,FREUND R,GIROSI F.Training support vector machines:an application to face detection[C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Puerto Rico:IEEE,1997:130-136.
  • 5VIOLA P,JONES M.Robust real-time object detection[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai:IEEE,2001.
  • 6LI S Z,ZHANG Z Q.Floatboost learning and statistical face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
  • 7HUANG C,AI H,LI Y,et al.High-performance rotation invariant multiview face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):671-686.
  • 8PHAM M T,CHAM T J.Fast training and selection of Haar features using statistics in boosting-based face detection[C] //IEEE 11th International Conference on Computer Vision,[s.l.] ,IEEE,2007.
  • 9WANG P,GRENN M B,JI Q,et al.Automatic eye detection and its validation[C] // IEEE International Conference on Computer Vision and Pattern Recognition.San Diego:IEEE,2005:164-164.
  • 10GUAN Y.Robust eye detection from facial image based on multi-cue facial information[C] // IEEE International Conference on Control and Automation.GuangZhou:IEEE,2007-1775-1778.

共引文献10

同被引文献27

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部