期刊文献+

基于改进的LVQ神经网络的发动机故障诊断 被引量:1

Fault diagnosis for engines based on improved LVQ neural network
下载PDF
导出
摘要 学习向量量化(LVQ)神经网络可以通过监督学习完成对输入向量模式的准确分类,提出了一种基于改进的LVQ神经网络的发动机故障诊断方法,介绍了LVQ神经网络及其改进的学习算法。以长城哈佛GW2.8TC型发动机为实验对象,让发动机在怠速状况下,对发动机进行故障设置,利用金德KT600电脑故障诊断仪采集发动机数据流,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ神经网络能对发动机故障做出正确分类,准确率比较高。 Since learning vector quantization(LVQ)neural network can classify input vector pattern accurately by supervised learning,the fault diagnosis method for engines based on LVQ neural network is proposed. LVQ neural network and its improved learning method are introduced. Taking Great Wall Harvard GW2.8TC engine as the experimental subject,faults are set for the engine under idle speed condition. The data stream of the engine is collected by using Kinder KT600 computer fault diagnosis tester. The diagnosis model was established by using the improved LVQ neural network. The diagnosis results show that the improved LVQ neural network can classify engine faults accurately,and the precision rate is relatively high.
出处 《现代电子技术》 北大核心 2015年第17期107-109,共3页 Modern Electronics Technique
关键词 改进的LVQ神经网络 发动机 故障诊断 神经元 improved LVQ neural network engine fault diagnosis neurone
  • 相关文献

参考文献4

二级参考文献27

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:145
  • 2徐涛,王祁.基于小波包LVQ网络的传感器故障诊断[J].哈尔滨工业大学学报,2007,39(1):8-10. 被引量:14
  • 3李自国,郝伟,李凌均.基于小波包分解和支持向量数据描述的故障诊断方法[J].机械强度,2007,29(3):365-369. 被引量:14
  • 4Yu H, Guo Q, Hu J, et al. Rolling Bearings Fault Diagnosis Based on Adaptive Gaussian Chirplet Spectrogram and Inde-pendent Component Analysis[M]. Berlin: Spfinger-Ver]ag, 2006.
  • 5Abbasiona S, Rafsanjania A, Farshidianfarb A, Irani N. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J]. Mechanical Systenm and Signal Processing, 2007,21:2933-2945.
  • 6Kothamasu R, Huang S H, VerDuin W H. System health monitoring and prognosticsa review of current paradigms and practices [J]. International Journal of Advanced Manufacturing Technology, 2006,28 : 1012-1024.
  • 7Kohonen T. Serf-Organization and Associative Memory, 2nd Edition [M]. Berlin : SpringerVerlag, 1987.
  • 8焦李成.神经网络计算[M].西安电子科技大学出版社,1995..
  • 9维修保障理论与应用[M].解放军出版社,2004.
  • 10神经网络理论与MATLAB 7实现[M].北京:电子工业出版社,2005

共引文献27

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部