期刊文献+

基于改进逆向运动学的人体运动跟踪 被引量:4

Human motion tracking based on an improved inverse kinematics
下载PDF
导出
摘要 随着人们对智能系统需求逐年增高,基于视觉的运动研究引起计算机视觉领域工作者更多的关注。这使它成为模式识别、行为学、行为处理分析与处理等学科的研究热门。现存算法存在需要标记、相机标定等各种约束条件,不能满足人们对人体运行跟踪的需求。论述了一种结合改进逆向运动学和图像模板匹配算法的人体运动位置的跟踪方法。该算法以改进逆向运动学为框架,首先依据逆向运动学知识与正向运动学知识计算出的关节点的粗略位置,对外观模型的各个模块进行模板匹配,接着确定关节点的最优位置,然后确定关节点的三维坐标值,最后重构得到三维动作序列。实验表明,在主观视觉感受与客观衡量标准两方面,此算法获得的实验结果都能够逼近乃至达到人体运动跟踪领域的最佳水准。 With the rising demand for intelligent systems,the study of vision-based human motion is drawing the machine vision investigators,making it become the research focus of pattern recognition,behavioral science,behavior analyzing and processing. The existing algorithms have many kinds of restriction conditions,such as marking and camera calibration,not being able to meet people's demand for tracking human motion. Therefore,this article proposes a human motion position tracking algorithm on the basis of video,combining the template matching and improved inverse kinematics. It first calculates the coarse position of joint point according to the inverse kinematics and forward kinematics,then applies template matching to each module of the appearing-model,and then determines the optimal location of joints and the 3D coordinates of joints,and finally obtains the 3D action sequences by reconstruction. Experimental results show that this algorithm can be close to and even reach the best level in both subjective visual feel and objective weighing standard in the field of human motion tracking.
出处 《智能系统学报》 CSCD 北大核心 2015年第4期548-554,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61303150)
关键词 改进逆向运动学 基于视觉人体运动跟踪 模板匹配 计算机视觉 用户接口 improved inverse kinematics human motion tracking template matching computer vision user interface
  • 相关文献

参考文献14

  • 1阮涛涛,姚明海,瞿心昱,楼中望.基于视觉的人体运动分析综述[J].计算机系统应用,2011,20(2):245-254. 被引量:26
  • 2李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述[J].计算机辅助设计与图形学学报,2006,18(11):1645-1651. 被引量:31
  • 3龚文凌,王洪澄,孙敏.视频交通监控系统中运动车辆捕捉算法的研究[J].微型机与应用,2004,23(3):45-46. 被引量:3
  • 4MULTON F, KULPA R, HOYET L , et al. Interactive animation of virtual humans based on motion capture data [ J ~. Computer Animation and Virtual Worlds, 2009, 20(5/6): 491-500.
  • 5GAVRILA D M. The visual analysis of human movement: a survey [ J ]. Computer Vision and Image Understanding, 1999, 73(1) : 82-98.
  • 6JIANG Zhuolin, LIN Zhe, DAVIS L S. Recognizing human actions by learning and matching shape-motion prototype trees[ Jl. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2012, 34(3): 533-547.
  • 7ELGAMMAL A, SHET V, YACOOB Y, et al. Learning dy- namics for exemplar-based gesture recognition [ C ] //2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, WI, USA: IEEE, 2003, 1 : 571-578.
  • 8AN K H, CHUNG M J. 3D head tracking and pose-robust 2D texture map-based face recognition using a simple ellip- soid model[ C I//IEEE/RSJ International Conference on In- telligent Robots and Systems, 2008. Nice: IEEE, 2008: 307-312.
  • 9MORI G, MALIK J. Recovering 3D human body configura- tions using shape contexts [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (7) : 1052- 1062.
  • 10刘琼,彭光正,刘昊.基于粒子滤波算法的三维关节型人体运动跟踪[J].北京理工大学学报,2011,31(2):163-167. 被引量:4

二级参考文献198

共引文献70

同被引文献41

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部