期刊文献+

基于模糊关联规则和决策树的图像自动标注 被引量:1

Automatic image annotation based on fuzzy association rules and decision trees
下载PDF
导出
摘要 传统的基于关联规则算法的图像自动标注存在"锐利边界"问题,使分类存在模糊性、不准确性。且随着多媒体技术的飞速发展,图像信息数据迅速增长,海量的图像数据会形成大量冗余的关联规则,这将导致分类效率大大降低。针对这2个问题,文中提出基于模糊关联规则和决策树的图像自动标注模型。该模型首先获得关联训练图像低层特征和高层语义的模糊关联规则,再利用决策树方法删减冗余的模糊关联规则,基于决策树删减后的模糊关联规则,大大减小了算法的计算复杂度。实验在Corel 5k和IAPR-TC12两个基准数据集上进行,并从精度、召回率、F-measure以及产生的规则数量几个度量措施上进行比较。与其他几种前沿的图像自动标注方法的结果对比表明,该方法在图像的标注精度和标注效率上有很大的提高。 The traditional automatic image annotation based on association rules exists the problem of sharp boundary,which makes classification more fuzzy and inaccurate. Moreover,with the rapid development of multimedia technology,the size of image data increases quickly. Massive image data will produce a lot of redundant association rules,which greatly decreases the efficiency of image classification. In order to solve these two problems,this paper proposes an automatic image annotation approach based on fuzzy association rules and decision trees. The approach firstly obtains fuzzy association rules which represent the fuzzy correlations between low-level visual features and high-level semantic concepts of training images. Then,decision tree is adopted to reduce the redundant fuzzy association rules. As a result,computational complexity of the algorithm is decreased to a large degree. Experiments were done on Corel5 k and IAPR-TC12 datasets. The evaluation measures are compared from the aspects of precision,recall,F-measure and the number of rules. The experimental results show that the proposed method acquires higher accuracy and efficiency in comparison with several state-of-the-art automatic image annotation approaches.
出处 《智能系统学报》 CSCD 北大核心 2015年第4期636-644,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61165009 61262005 61363035 61365009) 国家973计划资助项目(2012CB326403) 广西自然科学基金资助项目(2012GXNSFAA053219 2013GXNSFAA019345 2014GXNSFAA118368)
关键词 锐利边界 模糊分类 图像自动标注 模糊关联规则 决策树 sharp boundary fuzzy classification automatic image annotation fuzzy association rules decision tree
  • 相关文献

参考文献24

  • 1CHANG S K, HSU A. Image information systems: where do we go from here? [ J]. IEEE Transactions on Knowledgeand Data Engineering, 1992, 4(5) : 431-442.
  • 2MARKKUI,A M, SORMUNEN E. End-user searehing chal- lenges indexing practices in the digital newspaper photo ar- chive [ J ]. Information Retrieval, 2000, 1 (4) : 259-285.
  • 3JEON J, LAVRENKO V, MANMATHA R. Automatic image annotation and retrieval using cross-media relevanee models [C~//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informa- tion Retrieval. New York, USA, 2003: 119-126.
  • 4WANG Yong, MEI Tao, GONG Shaogang, et al. Combining global, regional and contextual features for automatic image annotation[ J 1- Pattern Recognition, 2009, 42 (2) : 259- 266.
  • 5DUYGULU P, BARNARD K, DE FREITAS J F G, e~ al. Ojecl recognition as machine translation: learning a lexicon ibr a fixed image w~eabulary [ M I//HEYDEN A, SPARR G, NIELSEN M, et al. Lecture Notes in Computer Science, w)l. 2353. Berlin : Springer-Varlag, 2002 : 97-112.
  • 6MONAY F, GATICA-PEREZ D. Modeling semantic aspects for cross-media image indexing[ J 1- IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10) : 1802-1817.
  • 7李志欣,施智平,李志清,史忠植.融合语义主题的图像自动标注[J].软件学报,2011,22(4):801-812. 被引量:50
  • 8LI Zhixin, SH1 Zhongzhi, ZHAO Weizhong, et al. Learning semantic concepts from image database with hybrid genera- tive/discriminative approach [ J ]. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2145-2152.
  • 9茹立云,马少平,路晶.基于Boosting学习的图片自动语义标注[J].中国图象图形学报,2006,11(4):486-491. 被引量:6
  • 10SUMATHI T, HEMAIATHA M. An innovative hybrid hi- erarchical model for automatic image annotation [ M 1// KRISHNA P V, BABU M R, ARIWA E. Global Trends in Information Systems and Software Applications, Volume 270. Berlin: Springer-Varlag, 2012: 718-726.

二级参考文献39

  • 1王小敏,曾生根,夏德深.基于松弛因子改进FastICA算法的遥感图像分类方法[J].计算机研究与发展,2006,43(4):708-715. 被引量:7
  • 2Niblack W, Barber R, Equitz W, et al. The QBIC project: querying images by content using color, texture and shape [A]. In:Proceedings of SPIE Storage and Retrieval for Image and Video Databases[ C ] , San Jose, CA, USA, 1993, 1908 : 173 - 187.
  • 3Batch J R, Fuller C, Gupta A, et al. The virge image search engine:an open framework for image management [A]. In: Proceedings of SPIE Storage and Retrieval for Image and Video Databases[C], San Jose, CA, USA, 1996, 2670:76 -87.
  • 4Smith J R, Chang S F. An image and video search engine for the World-Wide Web[A]. In:Proceedings of SPIE[C], San Jose, CA,USA, 1997, 3022 : 84 - 95.
  • 5Wang J Z, Li J, Wiederhold G. SIMPLicity: Semantics-sensitive integrated matching for pictures libraries [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (9): 947-963.
  • 6Minka TP, Picard R W. Interactive learning using a "society of models" [J]. Pattern Recognition, 1997, 30(4):565-581.
  • 7Barnard K, Forsyth D. Learning the semantics of words and pictures[A]. In: Proceedings of International Conference on Computer Vision [C], Vancouver, Canada, 2001:408-415.
  • 8Zhu S, Yuille A L. Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996, 18(9): 884-900.
  • 9Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) : 888-905.
  • 10Li J, Wang J Z, Automatic linguistic indexing of pictures by a statistical modeling approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10) :14.

共引文献66

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部