期刊文献+

具有动态惯性权重的布谷鸟搜索算法 被引量:30

Cuckoo search algorithm with dynamic inertia weight
下载PDF
导出
摘要 为提高布谷鸟搜索算法的搜索能力和寻优精度,提出一种具有动态惯性权重的布谷鸟搜索算法。该算法引入动态惯性权重改进鸟窝位置的更新方式,依据动态惯性权重值保留上代鸟窝的最优位置并进行下一代位置更新,从而有效平衡种群探索能力和开发能力之间的关系。并利用特征方程对改进算法进行了收敛性分析。仿真实验结果表明,与基本布谷鸟搜索算法、粒子群算法和蚁群算法相比,改进后的布谷鸟搜索算法能显著减少迭代次数和运行时间,有效提高算法的收敛速度和收敛精度。 In order to improve the search ability and optimization accuracy of cuckoo search algorithm,the cuckoo search with dynamic inertia weight is proposed. By utilizing the dynamic inertia weight,the improved cuckoo search updates the next nest position based on the former best nest position that has been saved with dynamic inertia weight,which can well balance the relation between population exploration and development capabilities. This paper also has a convergence analysis of the improved cuckoo search by the characteristic equation. The performance of the new method is compared with the basic cuckoo search,particle swarm optimization,ant colony optimization and other algorithms,showing that the improved cuckoo search algorithm can significantly reduce the number of iterations and running time,and can effectively improve the convergence speed and convergence precision.
作者 周欢 李煜
出处 《智能系统学报》 CSCD 北大核心 2015年第4期645-651,共7页 CAAI Transactions on Intelligent Systems
基金 河南省科技攻关重点基金资助项目(122102210201) 河南大学研究生教育综合改革基金资助项目(Y1427056)
关键词 布谷鸟搜索算法 函数优化 莱维飞行 动态惯性权重 种群规模 收敛性 复杂度 参数选取 cuckoo search algorithm function optimization Lévy flight dynamic inertia weight population size convergence complexity parameter selection
  • 相关文献

参考文献25

  • 1YANG Xinshe, DEB S. Cuckoo search via L6vy flights [ C l//World Congress on Nature & Biologically Inspired Computing. Coimbatore, India, 2009: 210-214.
  • 2李煜,马良.新型元启发式布谷鸟搜索算法[J].系统工程,2012,30(8):64-69. 被引量:64
  • 3陈乐,龙文.求解工程结构优化问题的改进布谷鸟搜索算法[J].计算机应用研究,2014,31(3):679-683. 被引量:21
  • 4OUAARAB A, AHIOD B, YANG Xinshe. Discrete cuckoo search algorithm for the travelling salesman problem[J]. Neu- ral Computing and Applications, 2014, 24(7/8) : 1659-1669.
  • 5SETHI R, PANDA S, SAHOO B P. Cuckoo search algo- rithm based optimal tuning of PID structured TCSC control-ler[ M]//JAIN L C, BEHERA H S, MANDAL J K, et al. Computational Intelligence in Data Mining-Vo|ume 1. Odis- ha: Springer, 2015: 251-263.
  • 6WALTON S, HASSAN O, MORGAN K, et al. Modified cuckoo search: a new gradient free optimisation algorithm [J]. Chaos, Solitons and Fractals, 2011, 44(9): 710-718.
  • 7ZHENG Hongqing, ZHOU Yongquan. A novel cuckoo search optimization algorithm based on Gauss distribution [J]. Journal of Computational Information Systems, 2012, 8(10) : 4193-4200.
  • 8苏芙华,刘云连,伍铁斌.求解无约束优化问题的改进布谷鸟搜索算法[J].计算机工程,2014,40(5):224-227. 被引量:2
  • 9龙文,陈乐.求解约束化工优化问题的混合布谷鸟搜索算法[J].计算机应用,2014,34(2):523-527. 被引量:9
  • 10VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. L6vy flights in random searches [ J ]. Physica A: Statistical Mechanics and its Applications, 2000, 282 ( 1/ 2) : 1-12.

二级参考文献152

共引文献445

同被引文献217

引证文献30

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部