期刊文献+

一种新的脉冲压缩雷达干扰处理方法 被引量:2

New Processing Method of Pulse Compression Radar Jamming
下载PDF
导出
摘要 本文通过在雷达干扰信号处理领域中应用随机微分,系统地对噪声调频干扰信号进行了分析。首先建立了噪声调频干扰信号通过脉冲压缩雷达中频滤波器后所满足的福克尔-普朗克方程,再通过群移傅立叶变换(Motion-Group Fourier Transform,MGFT)对偏微分方程组进行了转换,将其转化成了变系数齐次线性微分方程组,结合Peano-Baker级数法得到了该方程组的解,并得到了其概率密度函数。 With the stochastic differential in radar jamming signal processing, the noise frequency modulation signal was particularly analyzed in this paper. The Fokker-Planck equation, which is used to describe the processing of noise frequency modulation signal, was presented. According to the Motion-Group Fourier Transform, the partial differential equation was converted into the variable coefficient homogenous linear differential equations. With the Peano-Baker series, the solutions and the probability density function of noise frequency modulation were given.
出处 《现代导航》 2015年第4期372-377,共6页 Modern Navigation
关键词 随机微分 福克尔-普朗克方程 群移傅立叶变换 Peano-Baker级数 Stochastic Differential Fokker-Planck Equation MGFT Peano-Baker Series
  • 相关文献

参考文献10

  • 1Welsh B M, Link J N. Accuracy Criteria for Radar Cross Section Measurements of Targets Consisting of MultipleIndependent Scatterers. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 36(11): 1587-1593.
  • 2Anastassopoulos V, Lampropoulos G A, Drosopoulos Aet al. High Resolution Radar Clutter Statistics. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1999, 35(1): 43-60.
  • 3Rainal A J. Monopulse Radars Excited by Gaussian Signals. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1966, 2(3): 337-345.
  • 4Shor M. Performance of Order Statistics CFAR. IEEE TRANSACTIONS ON AEROSPACE AND ELEC- TRONIC SYSTEMS, 1991, 27(2): 214-224.
  • 5Joughin I R, Winebrenner D P, Percival D B. Probability Density Functions for Multilook Polarimetric Signatures. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING~ 1994, 32(3): 562-574.
  • 6Chirikjian G S, Kyatkin A B. Engineering Applications of Noncommutative Harmonic Analysis. Boca Raton, FL: CRC Press, 2000.
  • 7Wang Y F. Applications of diffusion processes in robotics, optical communications and polymer science. In: Ph.D. dissertation, Johns Hopkins Univ., Baltimore, MD, 2001.
  • 8Oksendal B. Stochastic Differential Equations, An ~ ~q Introduction with Applications~ Sprmger-Verlag, 2000.
  • 9Arnold L. Stochastic Differential Equations: Theory and Applications~ John Wiley & Sons, 1974.
  • 10Miller W. Lie Theory and Special Functions. New York: Academic, 1968.

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部