期刊文献+

无损检测技术可靠性的贝叶斯评估 被引量:2

Bayes evaluation on reliability of nondestructive test technology for aircraft structures
下载PDF
导出
摘要 针对无损检测数据具有的不确定性和样本采集的局限性,提出可靠性评估指标——损伤检出概率(POD)函数形式选取及参数估计带来的困难,首先提出基于贝叶斯公式和最优POD函数选取方法。其次针对贝叶斯后验概率难于求解的问题,将基于因子简化的贝叶斯信息准则(BIC)作为评判最优POD函数的准则。最后,通过算例分析表明基于贝叶斯方法选取的.POD函数适用于无损检测技术的可靠性评估。 Uncertainty and limitations of sample collection for nondestructive test data brought about the difficulties in selecting and estimating the parameter of damage probability of detection(POD) function that used on reliability evaluation.Firstly,the selection method of optimal POD function was proposed based on Bayesian formula.Secondly,a simplified Bayesian information criterion(BIC) as the optimal POD function criterion was given to solve the problem of Bayesian posterior probability in a complex model.Finally,the example analysis indicates the selected POD function based on Bayesian rule can be applied to reliability assessment on the nondestructive test of aircraft structure.
出处 《焊接》 北大核心 2015年第8期38-42,75,共5页 Welding & Joining
关键词 无损检测 裂纹 损伤检出概率 贝叶斯方法 可靠性评估 nondestructive crack damage probability of detection(POD) bay esian method reliability evaluation
  • 相关文献

参考文献7

  • 1王玉,高大路,廖明夫.焊接领域无损检测技术应用现状及发展[J].无损检测,2003,25(3):140-142. 被引量:16
  • 2郑世才.无损检测技术的可靠性[J].无损检测,1995,17(8):214-218. 被引量:16
  • 3凌树森.无损检测的可靠性研究--NDT可靠性软件的研制[C].全国材料理化测试与产品质量控制学术研讨会论文专辑(物理测试部分).上海:中国机械工程学会,2002:254-257.
  • 4Department of Defense. MIL - HDBK - 1823 [ M]. Air Force, USA, 2004.
  • 5SamuelKotz 吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社,2000..
  • 6Spiegehalter D J, Carlin N G, Vander Linde A. Bayesian measures of model eomplexity and fit [ J ]. Journal of the Royal Statistical Society, Series B, 2002, 64:583-639.
  • 7傅惠民,钱若力.无损检测可靠性与寿命控制方法[J].航空动力学报,1994,9(3):227-232. 被引量:15

二级参考文献28

  • 1张忠典,李严,何幸平,杨齐林,吴林,徐清.人工神经元网络法估测点焊接头力学性能[J].焊接学报,1997,18(1):1-5. 被引量:29
  • 2段立宇.红外图像传感技术在摩擦焊接温度场实时检测中的应用[J].西北工业大学学报,1993,11:17-22.
  • 3团体著者,概率统计计算,1983年
  • 4Ditchburn RJ, et al. NDT of welds: state of the art[J]. NDT & E International, 1996,29(2): 111-117.
  • 5Guu AC, Rokhlin SI. Arc weld process control using radiographic sensing[J]. Materials Evaluation, 1992,50(11): 1344-1348.
  • 6Carlson NM, Johnson JA, et al. Ultrasonic NDT methods for weld sensing[J]. Materials Evaluation,1992,50(11) :1338-1343.
  • 7Chen SB, Wu L, et al. Self-learning fuzzy neural networks and computer vision for control of pulsed GTAW[J]. Welding J, 1997,76(5): 201- 209.
  • 8Chen SB, et al. Intelligent methodology for sensing,modeling and control of pulsed GTAW: part 1 bead-on-plate welding[J]. Welding J, 2000,79 (6): 151 -163.
  • 9Chen SB, et al. Intelligent methodology for sensing,modeling and control of pulsed GTAW: part 2 butt joint welding[J]. Welding J, 2000,79 (6): 164- 174.
  • 10Wu CS, et al. A fuzzy logic system for process monitoring and quality evaluation in GMAW[J]. Welding J, 2001,80(2) :33-38.

共引文献50

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部