期刊文献+

一种测度金融历史事件相关性的新方法 被引量:3

A New Method for Detecting the Correlation between Historical Affairs in Financial System
原文传递
导出
摘要 边缘点分析方法是为了研究金融数据中蕴含的历史事件之间的相关性而提出的一种创新方法。该方法基于重构相空间理论,通过探测金融数据的递归图中历史数据之间的相近程度,把时间序列中点与点之间的关系转化为历史事件之间的关系,实现探测影响金融市场任一时间区域的重大历史事件的目的。本文将此方法应用于中国股票市场的分析中,得到了影响市场发展的诸如邓小平南方谈话、《证券法》的颁布与实施等重大历史事件,结果与现实情况很吻合。该方法在研究思路上属于历史回溯法,不带任何假设条件,研究过程和结果的客观性很强,也可用于其他领域的混沌时间序列分析当中。 The Border Point Analysis is a creative method, which is put forward to study the correlation between the financial data and the historical affairs. Based on the reconstruction of phase space theory, the method probes the similarity of the historical data in the fi nancial data recursive graph, turns the point-to-point relation in the time series into the relation of historical affairs, and thus achieves the goals of finding the important historical af- fairs which influenced the financial market in any period. When we use this method to analyze the Chinese stock market, we get the results that fit the history and reality very well. For example, we have found the significant historical affairs which have affected the development of the market, such as the South Tour Speeches by Deng Xiaoping, the promulgation and implementation of Securities Law. The method is one of the history backtracking methods. Without any assumption, its research process and results are very objective. Therefore, the method can be used to analvze the chaos time series in other fields.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2015年第9期101-118,共18页 Journal of Quantitative & Technological Economics
关键词 金融市场 递归图 类分形结构 边缘点分析 Financial Market Recursive Graph Fractal-like Structure Border Point Analysis
  • 相关文献

参考文献32

  • 1Brock W. A. , Hsieh D. A. , Lebaron Statistical Theory and Economic Evidence [M], Press. B. , 1991, Nonlinear Dynamics, Chaos and Instability: Cambridge, Massachusetts, London, England.- The MIT.
  • 2Eckmann J. P. , Kamphorst S. O. , Ruelle D. , 1987, Recurrence Plots of Dynamical Systems [J], Europhysics Letters, 4 (9), 973-977.
  • 3Farmer J. D. , Sidorowich J. J., 1987, Predicting Chaotic Time Series [J], Physical Review Let- ters 59, 845-848.
  • 4tMstos J. A. , Caiado J. , 2011, Recurrence Quantification Analysis of Global Stock Markets [J], Physica A: Statistical Mechanics and Its Applications, 390 (7), 1315-1325.
  • 5Mandelbrot t3. , 1982, The Fractal Geometry of Nature [M], New York: W. H. Freeman.
  • 6Packard N. H. , Crutchfield J. P. , Farmer J. D. , Shaw R. S. , 1980, Geometry from A Time Se- ries [J], Phys. Rev. Lett, 45, 712--716.
  • 7Peters E. E. , 1994, FractalMarket Analysis [M], New York: Wiley.
  • 8Scheinkman J. A. , Lebaron B. , 1989, Nonlinear Dynamics and Stock Returns [J], Journal of Business, 162 (2), 17-24.
  • 9Takens F. , 1981, Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics, Springer, Berlin, 898 (2), 366-381.
  • 10柴亮,余佳.上海股票市场的分形特征研究[J].上海金融学院学报,2010(2):53-58. 被引量:7

二级参考文献233

共引文献390

同被引文献25

  • 1范英,魏一鸣.基于R/S分析的中国股票市场分形特征研究[J].系统工程,2004,22(11):46-51. 被引量:52
  • 2李庆龙,贾宪军,焦健.用沙堆模型检验上证指数的分形特征[J].统计与决策,2005,21(01X):122-123. 被引量:6
  • 3郭兆纲、郭庭选:《股票价格指数系统是混沌动力系统》[A],《前进中的中国证券市场--第二届中国证券市场发展与中外证券市场比较研究会议论文选辑》[c],中港股市研究小组,世界出版社,1996.
  • 4Brock W. A. , Hsieh D. A. , Lebaron B. , 1991, Nonlinear Dynamics, Chaos and Instability. Statistical Theory and Economic Evidence [M], The MIT Press.
  • 5Eekmann J. P. , Oliffson K. S. , Rulle D. , 1987, Recurrence Plots of Dynamical Dystems [J], Europhysics Letters, 4 (9), 973-977.
  • 6Farmer J. D. , Sidorowich J. J. , 1987, Predicting Chaotic Time Series [J], Physical Review Let- ters, 59, 845-848.
  • 7Bastos J. A. , Caiado J. , 2011, Recurrence Quantification Analysis of Global Stock Markets [J], Physica A Statistical Mechanics and Its Applications, 390 (7), 1315-1325.
  • 8Mandelbrot B. , 1982, The Fractal Geometry of nature [M], New York: W. H. Freeman and Company.
  • 9Packard N. H. , Crutchfield J. P., Farmer J.D., Shaw R. S. , 1980, Geometry from A Time Se- ries [J], Physical Review Letters, 45 (9), 712-716.
  • 10Bak P. , Tang C. , Wiesenfeld K. , 1988, Self-organized Criticality [J], Physical Review A, 38 (1), 364-373.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部