摘要
设S={1,2,…,n},P(n)是由S的所有划分组成的集合.对于π,σ∈P(n),如果π中的每个块包含在σ的一个块里,就定义π≤σ,那么P(n)作成一个格.如果M(n,k)是由S的所有k部划分组成的集合,而L(n,k)是由M(n,k)生成的格.在P(n)和L(n,k)中,给出M(o|¨)bius函数,并且确定了特征多项式和秩生成函数的表示式.
Suppose that S = {1,2,…,n} and the set that is of consist of all partition of S,denote by P(n).For π,σ ∈P(n),together with the condition of every block belong to π is also included in any block of σ,then we define π≤σ and P(n) is known as a lattice.If the set M{n,k) that is of consist of all k-partition of S,and the lattice generated by M(n,k) by L(n,k).In the P(n) and L(n,k) the Mobius functions and is given,and the expressions of the characteristic polynomials and the rank-generating functions are obtained are also determined.
出处
《数学的实践与认识》
北大核心
2015年第14期312-318,共7页
Mathematics in Practice and Theory
基金
海南省自然科学研究资助项目113009
关键词
偏序集
格
MOBIUS函数
秩生成函数
特征多项式
poset
lattices
Mobius function
rank-generating tuction
characteristic polynomial