期刊文献+

划分格中的Mbius函数和秩生成函数

Mobius functions and Rank-generating functions in Finite Fields
原文传递
导出
摘要 设S={1,2,…,n},P(n)是由S的所有划分组成的集合.对于π,σ∈P(n),如果π中的每个块包含在σ的一个块里,就定义π≤σ,那么P(n)作成一个格.如果M(n,k)是由S的所有k部划分组成的集合,而L(n,k)是由M(n,k)生成的格.在P(n)和L(n,k)中,给出M(o|¨)bius函数,并且确定了特征多项式和秩生成函数的表示式. Suppose that S = {1,2,…,n} and the set that is of consist of all partition of S,denote by P(n).For π,σ ∈P(n),together with the condition of every block belong to π is also included in any block of σ,then we define π≤σ and P(n) is known as a lattice.If the set M{n,k) that is of consist of all k-partition of S,and the lattice generated by M(n,k) by L(n,k).In the P(n) and L(n,k) the Mobius functions and is given,and the expressions of the characteristic polynomials and the rank-generating functions are obtained are also determined.
出处 《数学的实践与认识》 北大核心 2015年第14期312-318,共7页 Mathematics in Practice and Theory
基金 海南省自然科学研究资助项目113009
关键词 偏序集 MOBIUS函数 秩生成函数 特征多项式 poset lattices Mobius function rank-generating tuction characteristic polynomial
  • 相关文献

参考文献9

  • 1Birkhoff G.Lattice Theory,3rd edition[M].Prouidence,Amer.Math.soc.coll.Publ,1967,25.
  • 2Aigner M.Combinatorial Theory[M].Berlin:Springer-Verlag,1979.
  • 3Richard P.Stanley.(1997).Enumerative Cominatorics Volume 1[M].Cambridge University Prees.
  • 4Wan Z,Geometry of Classical groups over Finite Fields[M].Studentlitteratur,Lund,Sweden/ChartwellBratt,Bromley,United Kingdow,1963.
  • 5Huo Y,and wan Z.On the geometricity of lattices generated by orbits of Subspaces under finite Classical.groups[J],J of Algebra,2001,243:339-359.
  • 6Huo Y,Liu Y,and Wan Z.Lattices generated by transitive sets of subspaces under finite classcal groups I[J].Comm.Algebra,20:1123-1144.
  • 7Huo Y,and Wan Z.On the geometricity of lattices generated by orbits of Subspaces under finite Classical groups[J].J of Algebra,243:339-359.
  • 8Qiong-yang Wu,Yan-bing Zhao and Yuan-ji Huo..Lattice of all subsets and partition lattice of n-set[J].ARS COMBINATORY VOLUME CIV APRIL.2012,104:3-11.
  • 9Orlik P,Solomon L.Arrangements in unitary and othogonal geometry over finite fields[J].J Combin Theory Ser A,1985(38):217-229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部