期刊文献+

应用萤火虫算法的混沌信号盲源分离 被引量:1

Blind Source Separation of Chaotic Signals by Using Firefly Algorithm
下载PDF
导出
摘要 针对现有的独立成分分析法分离混合混沌信号精度不理想的问题,提出了一种新的混沌信号盲分离方法。该方法以求解最优解混矩阵为目标,利用峭度构造目标函数,将混沌信号的盲源分离转化为一个优化问题,并用萤火虫算法求解。同时,通过预白化和正交矩阵的参数化表示降低优化问题的维数,能有效提高分离精度。仿真结果表明,无论是处理混合的混沌映射信号还是混合的混沌流信号,该方法都能快速收敛,并且其分离精度在各项实验中都优于独立成分分析法等现有的盲源分离方法。 Existing independent component analysis(ICA) method is not quite accurate when dealing with chaotic signals. To address this issue, a new blind source separation method based on the firefly algorithm is proposed. Kurtosis is used to design the objective function so that the blind source separation issue is transformed into an optimization problem and the solution is obtained by the firefly algorithm. In addition, pre-whitening process and parameterized representation of orthogonal matrices is employed to reduce the dimension of the optimization process. Therefore, better separation accuracy can be achieved. Simulation results show that the proposed method converges very fast when dealing with linearly mixed chaotic signals. In every simulation test, the proposed method is more accurate than ICA method and other blind source sep- aration methods.
作者 陈越 李硕明
出处 《电讯技术》 北大核心 2015年第8期836-841,共6页 Telecommunication Engineering
基金 中央高校基本科研业务费专项资金资助项目(3101003)~~
关键词 混沌信号 盲源分离 萤火虫算法 正交矩阵 chaotic signal blind source separation firefly algorithm orthogonal matrix
  • 相关文献

参考文献7

二级参考文献44

  • 1李雪霞,冯久超.一种混沌信号的盲分离方法[J].物理学报,2007,56(2):701-706. 被引量:16
  • 2杨洪生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006:3-4.
  • 3Jutten C,Herault J.Blind separation of sources,part I:an adap- tive algorithm based on neuromimefic I J]. Signal Processing, 1991,24(1) :1 - 10.
  • 4Cardoso J F, Laheld B H. Equivariant adaptive sources separa-tion [ J ].IEEE. Transactions on Signal Processing, 1996, 44 (12) ,3017 - 3029.
  • 5Zhou Guoxu, Yang Zuyuan, Xie Shengli, et al.Mixing Matrix estimation from sparse mixtures with unknown number of sources[ J]. IEEE Transactions on Neural Networks, 2011,22 (2) :211 - 221.
  • 6Acharya D P,Panda G,Mishra S,et al. Bacteria foraging based independent component analysis[ A ]. Proceedings of the Inter- national Conference on Computational Intelligence and Multi- media Applications ( ICCIMA2007 ) [ C ]. Washington: 1EEE Computer Society Press,2007.527- 531.
  • 7Karaboga D. An idea based on honey bee swarm for numerical optimization [ R ]. Kayseri: Erciyes University, Engineering Faculty, Computer Engineering Deparanent,2005.
  • 8Banhamsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm[ J ]. Applied Soft Computing,2011,11(2) :2888 - 2901.
  • 9Yang H H, Amari S. Serial updating rule for blind separation derived from the method of seoring[J]. IEEE Transactions on Signal Processing, 1999,47 (8) : 2279 - 2285.
  • 10Senthil Arumugam M,Rao M V C,Tan Alan W C.A novel and effective particle swarm optimization like algorithm with extrapolation technique [ J ]. Applied Soft Computing, 2009,9 (1) :308 - 320.

共引文献56

同被引文献7

  • 1陈琛. 基于自然梯度算法的变步长盲源分离[D]. 太原:太原理工大学,2010:40-46.
  • 2AFSHAR M H. Extension of the constrained particleswarm optimization algorithm to optimal operation of multi-reservoirs system [J]. Electrical Power and Energy Sys-tems,2013,51(2):71-81.
  • 3SHI Y H,EBERHART R C. Parameter selection in parti-cle swarm optimization[C] / / Proceedings of 7th Interna-tional Conference on Evolutionary Programming VII. Ber-lin Heidelberg:Springer,1998:591-600.
  • 4SHI Y,EBERHART R C,CHEN Y. Implementation of ev-olutionary fuzzy system[J]. IEEE Transactions on FuzzySystems,1999,7(2):109-119.
  • 5MAVADDATY S,EBRAHIMZADEH A. A comparative studyof bees colony algorithm for blind source separation[C]/ /Proceedings of the 20th Iranian Conference on Electrical En-gineering. Tehran,Iran:IEEE,2012:1172-1177.
  • 6张银雪,田学民,邓晓刚.基于改进人工蜂群算法的盲源分离方法[J].电子学报,2012,40(10):2026-2030. 被引量:25
  • 7邓灵,张天骐,金静,朱洪波.基于改进EASI算法的多跳频信号盲源分离[J].科学技术与工程,2014,22(2):45-49. 被引量:4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部