期刊文献+

低浓缩铀靶辐照后溶液中铀的化学种态及主要裂变元素的影响 被引量:4

Effect of Low-Enriched Uranium Targets Irradiation on Major Fission Elements and Uranium Speciation
下载PDF
导出
摘要 利用化学种态分析软件CHEMSPEC计算了低浓缩铀靶辐照后溶液中铀(U)的化学种态分布及其主要裂变元素对U化学种态的影响。结果表明,在单组分体系中,p H值和铀酰浓度都会显著影响U的化学种态分布。随着铀酰浓度的增大,溶液中将会生成多核配合物;在较高的NO3-浓度下,U在溶液中主要以UO22+和UO2NO3+的形式存在。CO2对不同浓度铀的种态分布影响结果表明,当铀酰浓度较低时,铀的化学种态多以碳酸铀酰的形式存在;当铀酰浓度较高时,铀的化学种态多以氢氧铀酰或柱铀矿沉淀的形式存在。计算发现,当裂片元素Tc、I、Mo的浓度小于0.01 mol·L-1并分别以Tc O4-、I-、Mo O42-的种态存在时,这些裂片元素不改变铀的各化学种态的分布。 The speciation of uranium and effect of major fission products after low-enriched uranium targets being irradiated and solvated were analyzed using the geochemical program CHEMSPEC. The results indicate that the speciation of uranium in water is determined by pH value and the concentration of uranyl, and polynuelear complexes may be generated at high concentration of uranyl. Nitrate anion in the solution may interact with uranyl, and at high concentration of nitrate, uranyl exists as UO22+ and UO2NO3+. The presence of CO2 at low concentrations of uranium brings substantial distribution uranyl carbonate, while this is negligible at highconcentration of uranyl due to heavy hydrolysis and aggregation of uranyl. The calculations also show that the major fission products, Tc, I, and Mo, do not affect the speciation of uranium when their concentrations are below 0.01 mol-L-1 and when they exist as Tc04, I-, MoO42-.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2015年第9期1774-1784,共11页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金委员会和中国工程物理研究院联合基金(NSAF No.U1330125) 国家基础科学人才培养基金.特殊学科点资助项目(No.J1210004) 国家自然科学基金委员会(No.91026000) 中国科学院百人计划(No.Y2291810S3)资助项目
关键词 化学种态 CHEMSPEC 裂变元素 辐照 speciation CHEMSPEC uranium fission element irradiation
  • 相关文献

参考文献43

  • 1Travelli A. Proceeding of the 19th International Meeting on Reduced Enrichment for Research and Test Reactors. Seoul, Korea, 1996:4-8.
  • 2Matos J E. Proceeding of the 25th International Meeting on Reduced Enrichment for Research and Test Reactors, RERTR-2003. Chicago, Illinois, 2003:1-8.
  • 3Yanagisawa K, Fujishiro T. J. Nucl. Sci. Technol., 1995,32(10):981-988.
  • 4Keilser D, Robinson A, Jue J. F, et al. J. Nucl. Mater., 2009, 393(2):311-320.
  • 5Izhutov A L, Alexandrov V V, Novosyolov A Y, et al. Proceedings of International Meeting on RERTR-2010. Lisbon, Portugal, 2010:10-15.
  • 6Moore G A, Rabin B H, Jue J F, et al. Proceedings of International Meeting on RERTR-2010. Lisbon, Portugal, 2010:1-5.
  • 7SUN Rong-Xian(孙荣先), XIE Huai-Ying(解怀英). 子能科学技术, 2011,45(7):847-851.
  • 8KANG Ya-Lun(唐亚伦). 原子能科学技术, 2003,37(Suppl.):21-23.
  • 9Omar H, Ghazi N, Hainoun A. Prog. Nucl. Energy, 2012,60:140-145.
  • 10Bokhari I, Pervez S. Nucl. Eng. Des., 2010,240:123-128.

二级参考文献36

  • 1郭永海,王驹,吕川河,刘淑芬,钟自华.高放废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作用模拟[J].地学前缘,2005,12(U04):117-123. 被引量:36
  • 2周佳,王驹,苏锐,等.还原氛围下U等元素的存在形式及矿物饱和指数的研究[C]//第二届废物处置研讨会论文集.2008:337-342.
  • 3Wolery TJ. EQ3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version7.0). UCRL-MA-110661PT I. Livermore, CA; Lawrence Livermore National Laboratory, 1992.
  • 4Crawford J. Geochemical modeling-A review of current capabilities and future directions. SNV Report 262, Swedish Environmental Protection Agency, 1999, Stockholm.
  • 5Merkel BJ, Planer-Friedrich B. Groundwater Geochemistry-A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems. Nordstrom DK ed. Berlin: Springer-Verlag, 2005.
  • 6Parkhurst DL, Appelo CAJ. User's guide to PHREEQC (version 2), a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS Water-Resources Investigations Report 99-4259.
  • 7Allison JD, Brown DS, Novo-Gradac K J. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 user's manual. Washington, DC: U.S. Government Printing Office. EPA/600/3-91/021, 1991.
  • 8Kulik DA. Gibbs energy minimization approach to modeling sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site-surface complexation. Amer J Sci, 2002, 302: 227-279.
  • 9Bethke CM, Yeakel S. The Geochemist's Workbench release 8.0, GWB essentials guide, hydrogeology program, University of Illinois, April 8, 2009.
  • 10Van der Lee J. Thermodynamic and mathematical concepts of CHESS, Technical Report Nr. LHM/RD/98/39, CIG, Ecole des Mines de Paris, Fontainebleau, France, 1998.

共引文献33

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部