期刊文献+

氢氟酸酸蚀形成的两种不同微/纳米表面对骨髓间充质干细胞生物活性的影响 被引量:1

Effects of hydrofluoric acid- treated titanium micro/nano surface on the biological activity of bone marrow mesenchymal stem cells
下载PDF
导出
摘要 目的:评价纯钛样品经12.5 g/L氢氟酸(HF)酸蚀处理不同时间后形成的两种不同表面对骨髓间充质干细胞(BMMSCs)生物活性的影响。方法:将纯钛钛片平均分为3组:A组抛光处理;B组12.5 g/L HF酸蚀1 min;C组12.5 g/L HF酸蚀15 min。X射线能谱仪分析(EDS)其表面化学成分;亲水性试验测量样品表面的接触角;激光共聚焦显微镜计数评价BMMSCs在样品表面的早期黏附;SEM观察观察样品表面形貌及黏附的细胞形态;MTT法检测细胞活性;碱性磷酸酶(ALP)试剂盒测定ALP活性。结果:酸蚀后的两组样品都可形成微/纳米级表面形貌且载入氟元素;酸蚀后的表面接触角明显小于抛光组,且C组小于B组;酸蚀后的纯钛样品表面能够促进BMMSCs的黏附、增殖和ALP活性,且C组优于B组。结论:HF酸蚀使纯钛表面构建了不同结构的微/纳米形貌,载入了氟元素,可促进BMMSCs在纯钛表面的生物活性。 AIM: To evaluate the effects of hydrofluoric( HF) acid-treated titanium surfaces on the biological activity of bone marrow mesenchymal stem cells( BMMSCs). METHODS: Titanium plates were divided into3 groups,the suface of the samples was polished in group A,etched by 12. 5 g / L HF acid for 1 min group B and etched by 12. 5 g / L HF acid for 15 min Group C. The surface of the sample was observed by scanning electron microscopy( SEM). The suxface chemical composition was assessed by energy dispersive X- Ray spectroscopy detector( EDS). Contact angles were detected by drop method. BMMSCs adhesion and morphology were examined by confocal microscopy and SEM. Cell viability and ALP activity were assessed by MTT assay and ALP detection kit. RESULTS:Micro / nano- scale surface structures were formed after HF etching. The sample surfaces of group B and C were loaded with fluorine. Contact angle of etching groups was significantly smaller than that of polishing group. HF-treated titanium surfaces significantly promoted adhesion,proliferation and ALP activity of BMMSCs. Furthermore,the effects of group C was greater than those of group B. CONCLUSION: HF acid- etch may forme different size of micro / nanoscale structures and load with fluorineon on titanium surface; can improve the biological activity of BMMSCs.
出处 《牙体牙髓牙周病学杂志》 CAS 2015年第8期472-476,500,共6页 Chinese Journal of Conservative Dentistry
基金 国家自然科学基金(81371186)
关键词 氢氟酸(HF) 酸蚀 微/纳米 表面处理 生物活性 HF acid etching micro/nano surface modification biological activity
  • 相关文献

参考文献10

  • 1Monjo M, Lamolle SF, Lyngstadaas SP, et al. In vivo expression of osteogenic markers and bone mineral density at the surface off- luoride - modified titanium implants [ J ]. Biomaterials, 2008, 29(28) : 3771 -3780.
  • 2Kong DS. The influence of fluoride on the physicochemical prop- erties of anodic oxide films formed on titanium surfaces [ J ]. Langmuir, 2008, 24(10): 5324-5331.
  • 3Dohan Ehrenfest DM, Coelho PG, Kang BS, et al. Classifica- tion of osseointegrated implartt surfaces: material, chemistry and topography [ J ]. Trends Biotechnol, 2010, 28 (4) : 198 - 206.
  • 4Shalabi MM, Gortemaker A, Van "t Hof MA. Implant surface roughness and bone healing: a systematic review [ J ]. J Dent Res, 2006, 85 (6) : 496 - 500.
  • 5Guo J, Padilla R J, Ambrose W. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent oste- oblast gene expression in vitro and in vivo [ J ]. Biomaterials, 2007, 28(36): 5418-5425.
  • 6Ellingsen JE, Johansson CB, Wennerberg A. Improved retention and bone - to implant contact with fluoride - modified titaniumimplants [ J ]. lnt J Oral MaxiUoac Implants, 2004, 19 ( 5 ) : 659 - 666.
  • 7于卫强,张富强,蒋欣泉.种植体表面纳米改性的研究进展[J].国际口腔医学杂志,2008,35(6):665-668. 被引量:3
  • 8Jimbo R, Coelho PC,, Bryington M, et al. Nano hydroxyapatite- caoted implants improve bone nanomechanial properties [ J ]. J Dent Res, 2012, 91(12) : 1172 -1177.
  • 9Klein MO, Bijelic A, Ziebart T, et al. Submicron scale- struc- tured hydrophilie titanium surfaces promote earlyosteogenic gene response for cell adhesion and cell differentiation [ J]. Clin Im- plant Dent Relat Res, 2013, 15(2) : 166 -175.
  • 10Lamolle SF, Monjo M, Rubert M, et al. The effect of hydroflu- oric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3 - E1 ceils [ J]. Bio- materials, 2009, 30(5): 736-742.

二级参考文献27

  • 1[1]Albrektsson T,Branemark PI,Hansson HA,et al.Acts Orthop Scand.1981,52(2):155-170.
  • 2[2]Teixeira AJ,Abrams GA,Berrics PJ,et al.J Cell Sci,2003,ll6(Pt 10):1881-1892.
  • 3[3]Kaphm FS,Lee WC,Keaveny TM,et al.Form and function of bone.Columbus,Ohio:Simon SP,1994:127-185.
  • 4[4]Webster TJ,Siegel RW,Bizios R.Biomaterials,1999,20(13):1221-1227.
  • 5[5]Webster TJ,Ergun C,Doremtts RH,et al.J Biomed Mater Res,2000,51(3):475-483.
  • 6[6]Webster TJ,Ergun C,Doremus RH,et al.Biomateriels,2000,21 (17):1803-1810.
  • 7[7]Li P.J Biomed Mater Bes A,2003,66(1):79-85.
  • 8[8]Bigi A,Nicoli-Aldini N,Bracci B,et al.J Biomed Mater Res A,2007,82(1):213-221.
  • 9[9]Schwarz K,Miine DB.Nature,1972,239(5371):333-334.
  • 10[10]Sato M,Samhito MA,Aslani A,et al.Biomaterials,2006,27 (11):2358-2369.

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部