期刊文献+

零级亚纯函数与多项式的复合函数的对数导数引理及其应用

The Logarithmic Derivative Lemma on Zero Order Meromorphic Functions Composed with Polynomials and Its Applications
原文传递
导出
摘要 研究零级亚纯函数与多项式的复合函数的对数导数引理.作为其应用,我们获得了零级亚纯函数与多项式复合函数的Nevanlinna特征和第二基本定理. We investigate the lemma on the logarithmic derivative of zero order meromorphic functions composed with polynomials.As its applications,we also study the Nevanlinna characteristic and the second main theorem for zero order meromorphic functions composed with polynomials.
作者 黄志波
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2015年第5期765-772,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11171119) 广东省自然科学基金资助项目(2014A030313422)
关键词 NEVANLINNA理论 零级亚纯函数 多项式 复合函数 q-差分模拟 Nevanlinna theory meromorphic functions of zero order polynomials composite functions q-difference analogues
  • 相关文献

参考文献14

  • 1Barnett D. C., Halburd R. G., Morgan W., et al., Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh, Sect. A, 2007, 137(3): 457 474.
  • 2Bergweiler W., Ishizaki K., Yanagihara N., Meromorphic solutions of some functional equations, Methods Appl. Anal., 1998, 5(3): 248-258; Correction: Methods Appl. Anal., 1999, 6(4): 617-618.
  • 3Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z + 7) and difference equations in the complex plane, Ramanujan Y., 2008, 16(1): 105-129.
  • 4Gromak V., Laine I., Shimomura S., Painlev~ Differential Equations in the Complex Plane, Walter de Cruyter, Berlin, New York, 2002.
  • 5Halburt R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Aead. Sci. Fenn. Math., 2006, 31(2): 463 478.
  • 6Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with appli- cations to difference equations, J. Math. Anal. Appl., 2006, 314(2): 477-487.
  • 7Halburd R. G., Korhonen R. J., Tohge K., Holomorphic curves with shift invariant hyperplane preimages, Trans. Amer. Math. Soc, 2014, 366(8): 4267 4298.
  • 8Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • 9Hille E., Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1997.
  • 10Korhonen R., An extension of Picard's theorem for meromorphic functions of small hyper-order, J. Math. Anal. Appl., 2009, 35T(1): 244-253.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部