摘要
双重导子是导子的一种推广形式.令δ和ε为复线性代数A到自身内的两个映射,称A到自身内的线性映射d是一个(δ,ε)-双重导子,如果对任意a,b∈A,有d(ab)=d(a)b+ad(b)+δ(a)ε(b)+ε(a)δ(b)成立.本文研究Banach代数上双重导子的自动连续性问题,证明如果δ和ε为含单位元C^*-代数上的两个在0点连续的映射,则该C^*-代数上的每个(δ,ε)-双重导子都是自动连续的.
The double derivations are the generalized forms ot ordinary derivations.For two mappings δ and ε from a complex linear algebra A into itself,a linear mapping d from A into itself is called a(δ,ε)-double derivation,if d(ab) — d(a)b+ad(b)+δ(a)ε(b)+ε(a)6(b) for all a,b∈ A.We studies the problem on the automatic continuity of double derivations of Banach algebras.We prove that,if δ and ε are two continuous at zero mappings from a unital C^*-algebra A into itself,then every(δ,ε)-double derivation of A is automatically continuous.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2015年第5期853-860,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11271224
11371222)