期刊文献+

随机维哈希量化视词字典的目标检索方法 被引量:1

OBJECT RETRIEVAL BASED ON VISUAL-WORDS DICTIONARY WITH RANDOMISED DIMENSIONS HASHING QUANTIFICATION
下载PDF
导出
摘要 基于视词字典树的算法由于高效性使其在基于大规模图像数据库的目标检索领域得到了广泛地应用。该类算法属于从文字搜索领域借鉴来的"视觉词袋"的算法。这种算法中的一个关键步骤是将高维特征向量量化成视词。将这种量化过程看作高维特征向量的最近邻搜索问题,并且提出一种随机维哈希(RDH)算法用于索引视词字典。实验结果证明,该算法比基于字典树的算法具有更高的量化精度,从而可以显著提高目标检索性能。 Visual-words dictionary tree-based algorithm has been widely applied in object retrieval in large-scale image database due to its efficiency. Such algorithm appertains to the bag-of-visual-words algorithm which is borrowed from text search field. A key step of such algo- rithm is to quantify the high-dimensional feature vectors to the visual words. In this paper, we consider the quantification process as the nea- rest neighbour search of high-dimensional feature vectors, and propose a randomised dimensions hashing algorithm to index the visual-word dictionary. Experimental results demonstrate that the proposed algorithm has higher quantification accuracy than the vocabulary tree-based al- gorithms, thus it can significantly improve object retrieval performance.
出处 《计算机应用与软件》 CSCD 2015年第9期149-151,191,共4页 Computer Applications and Software
关键词 目标检索 视词字典 随机维哈希 Object retrieval Visual-words dictionary Randomised dimensions hashing
  • 相关文献

参考文献15

  • 1Lie-fu AI,Jun-qing YU,Yun-feng HE,Tao GUAN.High-dimensional indexing technologies for large scale content-based image retrieval: a review[J].Journal of Zhejiang University-Science C(Computers and Electronics),2013,14(7):505-520. 被引量:4
  • 2Sivic J, Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos [ C ]//ICCV, Vol. 2, 2003 : 1470 - 1477.
  • 3Philbin J, Chum O, Isard M, et al. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases [ C ]// CVPR, 2008.
  • 4Nisiar D, Stew6nius H. Scalable Recognition with a Vocabulary Tree [C]//CVPR, Vol. 2, 2006:2161-2168.
  • 5Sehindler G, Brown M, Szeliski R. City-Scale Location Recognition [ C]//CVPR, 2007.
  • 6Liefu Ai, Junqlng Yu, Tao Guan. Spherical Soft Assignment: Impro- ving Image Representation in Content-Based Image Retrieval [ C ]// 13^th Pacific-Rim Conference on Multimedia, 2012:801 -810.
  • 7Herve Jegou, Matthijs Douze, Cordelia Sehmid, et al. Improving Bag- of-Features for Large Scale Image Search [ J]. International Journal of Computer Vision, 2010,87 (3) : 316 - 336.
  • 8Phil.hi.n J, Chum O, Lsard M, et al. Object Retrieval with Large Vo- cabularies and Fast Spatial Matching[ C ]//CVPR, 2007:1 -8.
  • 9Mikolajezyk K, Leibe B, Schiele B. Multiple Object Class Detection with a Generative Model[C]//CVPR, Vol. 1,2006:26-36.
  • 10Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints [J]. IJCV, 2004, 60(2):91-110.

二级参考文献140

  • 1曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 2韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5
  • 3DORETrO G, CHIUSO A, WU Y N, et al. Dynamic textures[ J]. In- ternational Journal of Computer Vision, 2003,51 (2) : 91 - 109.
  • 4RADKE R J, ANDRA S, AL-KOFAHI O, et al. Image change detec- tion algorithms: a systematic survey[ J]. IEEE Transactions on Image Processing, 2005, 14(3) : 1 - 14.
  • 5ELHABIAN S Y, EL-SAYED K M, AHMED S H. Moving object detec- tion in spatial domain using background removal techniques state of art [ J]. Recent Patents on Computer Science, 200-, 1 (1) : 32 - 54.
  • 6ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estima- tion for visual surveillance[ J]. Proceedings of the IEEE, 2002, 90(7) : 1151 -1163.
  • 7KATO J, WATANABE T, JOGA S, et al. An HMM-based segmentation method for traffic monitoring movies[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9) : 1291 - 1296.
  • 8LOWED G. Object recognition from local scale-invariant features [ C]// ICCV'99: Proceedings of the International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 1999, 2:1150 -1157.
  • 9YU XIA-QIONG, CHEN XIANG-NING, XU HONG-QING, et al . Moving object detection from moving camera sequences[ C]// Pro- ceedings of the Sixth International Symposium on Precision Engineer- ing Measurements and Instrumentation, SPIE 7544. [ S. 1. ] : SPIE, 2010:381 -386.
  • 10MACQUEEN J. Some methods for classification and analysis of mul- tivariate observations[ C]//Proceedings of the 5th Berkeley Sympo- sium on Mathematical Statistics and Probability. [ S. 1. ]: IEEE, 1967: 281 - 297.

共引文献18

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部