期刊文献+

基于压缩感知的织物疵点分类研究

Fabric Defects Classification Based on Compressed Sensing
下载PDF
导出
摘要 针对织物疵点图像特征,提出了利用压缩感知提取织物疵点特征数据的方法.为了提取到疵点特征,需利用感知波形对图像的数据矩阵进行感知得到特征数据,同时对分类器进行并联设计,继而通过仿真和实验,检测出疵点类型信息.实验表明,该方法能有效地分类出织物疵点的数据信息. Based on charactersitics of fabric defects image,this paper proposes the use of compressed sensing to extract charactersitic data of fabric defects. In order to implement this extraction,sensing waveform is needed for handling data matrix to obtain characteristic data,while the classifiers must be in parallel design,followed by simulation and experiment,to obtain defect type information. Experiments show that this method can effectively classify the fabric defect data.
作者 侯远韶
出处 《洛阳师范学院学报》 2015年第8期26-29,共4页 Journal of Luoyang Normal University
基金 河南省科技攻关计划项目(0721002210032)
关键词 压缩感知 特征数据 分类器 compressed sensing feature data classifier
  • 相关文献

参考文献12

  • 1张五一,侯远韶,张继超,杨扬.基于二维稀疏表示和范数优化的织物疵点分类研究[J].中原工学院学报,2012,23(3):24-28. 被引量:2
  • 2Donoho D, Elad M. Optimal Sparse Representation in Gen- eral (nonorthogonal) Dictionaries via L1 Minimization [ C ]. New York : In Proceedings of the National Academy of Sciences, 2003.
  • 3Donoho D. For Most Large Underdetermined Systems of Linear Equations the Minimal 1 - norm Solution is also the Sparsest Solution Comm [ J ]. On Pure and AppliedMath, 2006,59 (6) : 797 - 829.
  • 4侯臣平,吴翊,易东云.新的流形学习方法统一框架及改进的拉普拉斯特征映射方法[J].计算机研究与发展,2009,46(4):676-682. 被引量:15
  • 5Peyr6 G. Manifold Models for Signals and Images [ J ]. Computer Vision and Image Understanding, 2009, 113 (2) : 249 - 260.
  • 6Wakin M B. Manifold - Based Signal Recovery and Pa- rameter Estimation [ J ]. Compressive Measurements ( Pre- print), 2008, 22(3) :226 -231.
  • 7Davenport M A. The Smashed Filter for Compressive Clas- sification and Target Recognition [ C ]. Canada: In Pro- ceedings of Computational Imaging V at SPIE Electronic Imaging, 2007.
  • 8戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:216
  • 9Deanna Needell, Roman Vershynin. Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit [ J ]. Foundations of Computational Mathematics, 2009, 9(3):317-334.
  • 10Liang Liao, Zhoufeng Liu and Yanning Zhang. "Image classification via nearest subspace and two - dimensional underdetermined random projection" [ J ]. IEEE Industri- al electronics and applications (ICIEA 2012 ), 2012, (7).

二级参考文献71

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Seung H S, Lee D D, The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 3Tenenbaum J, Silva V D. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290 (12) : 2319-2323
  • 4Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J]. Journal of Machine Learning Research, 2003, 4(6) : 119-155
  • 5Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396
  • 6Zhang Zhenyue, Zha Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment SIAM [J]. Journal of Scientific Computing, 2004, 26(1):313-338
  • 7Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction [C] //Proe of the 21st Int Conf on Machine Learning (ICML-04). New York:ACM, 2004: 839-846
  • 8Yan Shuicheng, Xu Dong, et al. Graph embedding and extension: A general framework for dimensionality reduction [J]. IEEE Trans on Pattern Analysis and Machine Intelligence (TPAMI), 2007, 29(1) : 40-51
  • 9Lu Fan, Regularized nonparametric logistic regression and kernel regularization [D]. Madison, WI: Department of Statistics, University of Wisconsin, 2006
  • 10Beauer F, Pereverzev S, Rosasco L. On regularization algorithm in learning theory [J]. Journal of Complexity, 2007, 23(1): 52-57

共引文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部