摘要
令H={(z,t):z∈Cn,t∈Rm}表示Heisenberg型群,对于(z,t),(z',t')∈H,群乘法法则为(z,t)°(z',t')=(z+z',t+t'+1/2zJz't),其中zJ z't=(z U(1)z't,z U(2)z't,…,z U(m)z't),z't表示z'的转置,U(j)(j=1,2,…,m)是2n×2n反对称实正交矩阵,文章给出了H上的Radon变换,并通过Fourier变换得到了与映射J相关的逆公式.
Let H ={(z,t):z∈Cn ,t∈Rm}be the Heisenberg-type groups.For (z,t),(z′,t′)∈H,the group multiplication is given by (z,t)°(z′,t′)=(z +z′,t +t′+12 zJz′t ),where zJz′t =(zU(1 )z′t ,zU(2)z′t ,…,zU(m) z′t ),z′t denotes the transpose of z′,and U(j)(j=1 ,2,…,m)are real skew-symmetric orthogonal matrices.In this paper,we give the definition of the Radon transform on the Heisenberg-type groups,and obtain an inversion formula related with the mapping J by Fourier transform.
出处
《广州大学学报(自然科学版)》
CAS
2015年第3期1-3,共3页
Journal of Guangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11271091
11471040)