期刊文献+

Heisenberg型的群上的Radon变换

The Radon transform on the Heisenberg-type groups
下载PDF
导出
摘要 令H={(z,t):z∈Cn,t∈Rm}表示Heisenberg型群,对于(z,t),(z',t')∈H,群乘法法则为(z,t)°(z',t')=(z+z',t+t'+1/2zJz't),其中zJ z't=(z U(1)z't,z U(2)z't,…,z U(m)z't),z't表示z'的转置,U(j)(j=1,2,…,m)是2n×2n反对称实正交矩阵,文章给出了H上的Radon变换,并通过Fourier变换得到了与映射J相关的逆公式. Let H ={(z,t):z∈Cn ,t∈Rm}be the Heisenberg-type groups.For (z,t),(z′,t′)∈H,the group multiplication is given by (z,t)°(z′,t′)=(z +z′,t +t′+12 zJz′t ),where zJz′t =(zU(1 )z′t ,zU(2)z′t ,…,zU(m) z′t ),z′t denotes the transpose of z′,and U(j)(j=1 ,2,…,m)are real skew-symmetric orthogonal matrices.In this paper,we give the definition of the Radon transform on the Heisenberg-type groups,and obtain an inversion formula related with the mapping J by Fourier transform.
出处 《广州大学学报(自然科学版)》 CAS 2015年第3期1-3,共3页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271091 11471040)
关键词 Heisenberg型的群 RADON变换 逆公式 Heisenberg-type groups Radon transform inversion formula
  • 相关文献

参考文献2

二级参考文献37

  • 1D Müller.A restrition theorem for the Heisenberg group,Ann Math,1990,131:567-587.
  • 2E M Stein.Harmonic Analysis,Princeton University Press,1993.
  • 3T Tao.Some recent progress on the restriction conjecture,In:Fourier Analysis and Convexity,Appl Numer Harmon Anal,2004,217-243.
  • 4S Thangavelu.Hermite and Laguerre Expansions,Princeton University Press,1993.
  • 5S Thangavelu.Harmonic Analysis on the Heisenberg Group,Progr Math 159,1998.
  • 6Beals, R., Gaveau, B., Greiner, P. C.: The Green functions of model step two hypoelliptic operators and the analysis of certain tangential Cauchy-Riemann complexes. Adv. Math., 121, 288-345 (1996).
  • 7Brocker, T., Dieck, T.: Representations of compact Lie groups, Springer-Verlag, New York-Berlin- Heidelberg-Tokyo, 1985.
  • 8Chang, D.-C., Markina, I.: Geometry analysis on quaternion H-type groups. J. Geom. Anal., 16, 265-294 (2006).
  • 9Cowling, M., Dooley, A., Kornyi, A., et al.: An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal., 8, 199-237 (1998).
  • 10Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF, Regional Conf. Ser. in Math. 61, SIAM, Philidephia, PA, 1992.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部