期刊文献+

一种针对高光谱遥感影像的波段选择方法 被引量:1

A method of band selection special for the hyperspectral remote sensing image
下载PDF
导出
摘要 随着传感器技术的不断发展,高光谱遥感影像已经广泛应用于土地覆盖监测等诸多领域。高光谱遥感影像具有波段数目多、波段间相关性强等特点,因此在图像分类时需要有效的波段选择方法以提高遥感影像的使用效率。文中提出了一种针对高光谱遥感影像的波段选择方法,该方法首先使用信息散度描述波段间的相关性,通过构造信息散度矩阵对子空间进行划分。然后使用波段的信息量和Bhattacharyya距离构建适应度函数,并对粒子群算法中的惯性权值更新方式进行改进。通过对AVIRIS高光谱遥感图像进行实验证明,与现有算法相比文中算法具有更高的分类精度及更快的收敛速度。 With the constant development of sensor technology,the hyperspectral remote sensing image is widely applied in many fields such as the land cover monitoring. The hyperspectral remote sensing image is characterized by the adequate number of bands and strong correlation between bands. Thus it requires the effective selection of bands when handling the image classification,which can increase the operation efficiency of remote sensing image. This paper proposed a method of band selection special for the hyperspectral remote sensing image. Firstly,it made use of the correlation between bands described by the information divergence to divide the sub-space using the matrix of information divergence. Then it constructed the fitness function relying on the information content and Bhattacharyya distance. It also improved the update method of inertia weight in the particle swarm optimization algorithm. Compared with the existing algorithms,the experimental results of AVIRIS hyperspectral remote sensing image showed the higher classification accuracy and faster speed of convergence.
作者 李亮
出处 《信息技术》 2015年第8期211-213,216,共4页 Information Technology
关键词 高光谱遥感图像 图像分类 信息散度 粒子群优化算法 波段选择 hyperspectral remote sensing image image classification information divergence particle swarm optimization algorithm band selection
  • 相关文献

参考文献6

  • 1赵春晖,陈万海,杨雷.高光谱遥感图像最优波段选择方法的研究进展与分析[J].黑龙江大学自然科学学报,2007,24(5):592-602. 被引量:37
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.Perth:IEEE Neural Networks Society,1995:1942-1948.
  • 3Kennedy J,Eberhart R C.A Discrete Binary Version of the Particle Swarm Algorithm[C]//Proceedings of the World Multiconference on Systemic,Cybernetics and Informatics 1997.Piscataway:IEEE,1997:4104-4109.
  • 4Chein-I Chang,Qian Du,Tzu-Lung Sun,et al.A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J].Geoscience and Remote Sensing,IEEE Transactions on Nov.,1999,37(6):2631,2641.doi:10.1109/36.083411.
  • 5姚志均,刘俊涛,周瑜,刘文予.基于对称KL距离的相似性度量方法[J].华中科技大学学报(自然科学版),2011,39(11):1-4. 被引量:18
  • 6Cover T M,Thomas J A.Elements of Information Theory[M].Hoboken,NJ:Wiley,1991.

二级参考文献32

共引文献53

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部