期刊文献+

动态环境下的虚拟网故障诊断算法 被引量:2

On Virtual Network Fault Diagnosis Algorithm in Dynamic Environment
下载PDF
导出
摘要 网络虚拟化的动态性特点容易造成网络模型知识不准确、网络信息传输噪声增大等问题,给故障诊断带来挑战。采用贝叶斯网对网络虚拟化环境下的故障诊断问题进行建模,提出一种动态环境下的虚拟网故障诊断算法,算法的主要过程包括时间信息处理、噪声处理、故障定位、计算后验概率和执行更新。仿真结果显示,该算法克服了网络虚拟化的动态性带来的问题,降低了诊断复杂度,提高了诊断性能。 The dynamic characteristics of network virtualization cause inaccurate network model knowledge, the increase of network information transmission noise, and bring a challenge to fault diagnosis. Using bayesian network to model the fault diagnosis problem in network virtualization environment, it puts forward a kind of virtual network fault diagnosis algorithm in dynamic environment, the main process of algorithm includes time information processing, noise processing, fault location,computing posteriori probability and update. The simulation result shows that the algorithm overcomes the dynamic problems of network virtualization, reduces the complexity, and improves the performance of diagnosis.
作者 郭贺彬
出处 《辽宁高职学报》 2015年第7期79-83,共5页 Journal of Liaoning Higher Vocational
基金 北京市职业院校职教名师培养计划2013年度资助项目(bjms201318)
关键词 网络虚拟化 故障诊断 贝叶斯网 network virtualization fault diagnosis bayesian network
  • 相关文献

参考文献16

  • 1Papadimitriou P, Houidi I, Louati W. Towards Large- Scalenetwork Virtualization. Springer[J]. Wired/Wireless Internet Communication,Lecture Notes in Computer Scie nce,2012,727(7):13-25.
  • 2Dong Y, Yang X, Li J, Liao G, Tian K. High Performance Network Virtualization with SR-IOV [J]. Elsevier Communication Architectures for Scalable Systems,2012,72(11): 1471-1480.
  • 3Drutskoy Dmitry, Elysium Digital,Keller Eric,alt. Scala ble Network Virtualization in Soft-ware-Defined Net- works[J]. IEEE Interact Computing,2013,17(2):20-27.
  • 4Wang A J, Mohan Iyer, Rudra Dutta, et al. Network Virtualization: Technologies,Perspectives,and Frontiers [J]. Journal of Lightwave Ghtwave Technology, 2013,31 (4):523-537.
  • 5.Slavisa A, Igor Miladinovic.Network Virtualization: Paving the Way to Carrier Clouds[C]//Proceedings of the 16th International Telecommunications Network Strategy and Planning Symposium (Networks 2014),2014, Func hal, Madeira Island, Portugal:l-6.
  • 6Ding J G, Kramer B, Xu S H, Chen H S, Bai Y C. Predi Ctive Fault Management in the Dynamic Envir- onment of IP Networks[M].Proc. of the IEEE Workshop on IP Operations and Management,2004:233-239.
  • 7Rish I, Brodie M, Ma S, Odintsova N.Adaptive diagn osis in distributed systems [J]. IEEE Trans. on Neural Networks (Special Issue on Adaptive Learning Systems in Communication Networks), 2005,16(5): 1088-1109.
  • 8Natu M, Sethi A S. Using Temporal Correlation for Fault Localization in Dynamically Changing Networks.Int'l Journal of Network Management, 2007 [EB/OL]. [2015-05-22].http://portal.acm.org/citation.cfm?id= 14155 15 12.
  • 9Lu C, Xue S Q. Luo M M, Yan Q, Li Z Q. Probabi- listic Fault Diagnosis for IT Services in Noisy and Dynamic Environments[M]. in IM 2009.
  • 10Steinder M, Sethi A S. A Survey of Fault Localization Techniques in Computer Networks[J]. Science of Comp- uter Programming. Computer Systems (AH), 2004,53 (22): 165-194.

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部