期刊文献+

一种新序下二元凸模糊数值函数的判定定理

The Judge Theorems of Convex Bivariate Fuzzy-valued Function
下载PDF
导出
摘要 通过一种新的模糊数序关系,首先给出了二元凸模糊数值函数及二元模糊数值函数上半连续、下半连续的定义,其次利用二元模糊数值函数的上、下半连续讨论了二元凸模糊数值函数的判定定理. Based on the new ordering of fuzzy numbers proposed by Goetschel and Voxman,the definition of convex bivariate fuzzy-valued function and the upper(lower)semicontinuity of fuzzy-valued function are given,some judge theorems of convex bivariate fuzzy-valued function can be obtained.
作者 白玉娟 刘坤
出处 《德州学院学报》 2015年第4期21-23,共3页 Journal of Dezhou University
基金 陇东学院青年科技创新项目(XYLK1303)
关键词 模糊数值函数 上半连续 下半连续 凸性 fuzzy-number-valued functions upper semicontinuity lower semicontinuity convexity
  • 相关文献

参考文献8

  • 1S.Nanda,K.Kar.Convex fuzzy mappings[J].Fuzzy Sets and Systems,1992,48:129-132.
  • 2Y.R.Syau,Generalization of preinvex and B-vex fuzzy mappings[J].Fuzzy Sets and Systems,2001,120:533-542.
  • 3M.Panigrahi,et al.Convex fuzzy mapping with differentiability and its application in fuzzy optimization[J].European Journal of Operational Research,2007,185:47-52.
  • 4李红霞,巩增泰.模糊数值函数的凸性与可导性[J].西北师范大学学报(自然科学版),2007,43(5):1-6. 被引量:11
  • 5吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991.84-96.
  • 6R Goetschel Jr.,W Voxman.Elementary fuzzy calculus[J].Fuzzy Sets and Systems,1986,18:31-43.
  • 7巩增泰,白玉娟.预不变凸模糊数值函数及其应用[J].西北师范大学学报(自然科学版),2010,46(1):1-5. 被引量:9
  • 8白玉娟.凸模糊数值函数的判定定理[J].陇东学院学报,2011,22(2):19-21. 被引量:2

二级参考文献22

  • 1吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 2NANDA S, KAR K. Convex fuzzy mappings[J]. Fuzzy Sets and Systems, 1992, 48: 129-132.
  • 3SYAU Y R. Generalization of preinvex and B-vex fuzzy mappings[J]. Fuzzy Sets and Systems, 2001, 120: 533-542.
  • 4PANIGRAHI M, PANDA G, NANDA S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization [J]. European Journal of Operational Research, 2007, 185:47-62.
  • 5NOOR M A. Fuzzy preinvex functions[J]. Fuzzy Sets and Systems, 1994, 64: 95-104.
  • 6GOETSCHEL Jr R, VOXMAN W. Elementary fuzzy calculus[J]. Fuzzy Sets and Systems. 1986, 18: 31-43.
  • 7SYAU Y R, LEE E S. Preinvexity and O1 - convexity of fuzzy mappings through a linear ordering[J].Computers and Mathematics with Applications, 2006, 511 405-418.
  • 8YANG Xin-min, LI Duan. On properties of preinvex functions[J]. J Math Anal Appl, 2001, 256(1): 229-241.
  • 9WU Ze-zhong, XU Jiu - ping. Generalized convex fuzzy mappings and fuzzy variational-like inequality[J]. Fuzzy Sets and Systems, 2009, 160(11): 1590-1619.
  • 10S. Nanda, K. Kar. Convex fuzzy mappings[J].Fuzzy Sets and Systems. 1992,48:129-132.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部