期刊文献+

基于MYCIN不确定因子的区间灰数应急决策方法 被引量:1

Interval Grey Numbers Emergency Decision-making Methods Based on MYCIN Uncertainty Factor
下载PDF
导出
摘要 主要研究了方案的指标值为区间灰数的快速应急决策方法。将MYCIN不确定因子融合到灰色决策理论中,通过计算各方案在不同指标下的MYCIN不确定因子并对其进行融合,确定最佳决策方案。建立了基于证据推理的应急决策方法,给出了区间灰数决策方法步骤;通过案例分析结果验证了所提方法的有效性。 This paper focuses mainly on emergency decision-making problems when attribute values of correspond- ing alternatives are interval grey numbers. The MYCIN certainty factor is integrated into grey decision-making theory. By computing the certainty factor of all alternatives in different indices and fusion of them, the best alter- native is obtained. Emergency decision-making method based on evidence reasoning is established and the procedure of interval grey numbers decision-making is presented. Finally, an example is given to illustrate the efficiency of the approach proposed in this paper.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2015年第4期30-35,共6页 Operations Research and Management Science
基金 河北省高等学校自然科学青年基金项目(2011111)
关键词 区间灰数 MYCIN不确定因子 数据融合 应急决策 interval grey numbers MYCIN certainty factor data fusion emergency decision-making
  • 相关文献

参考文献18

  • 1Zadah L A. Fuzzy sets[ J]. Information and Control, 1965,8: 338-353.
  • 2Chen S J, Hwang C L. Fuzzy multiple attribute decision making: methods and applications[ M]. New York: Springer, 1992.
  • 3徐泽水.求解不确定型多属性决策问题的一种新方法[J].系统工程学报,2002,17(2):177-181. 被引量:124
  • 4Fan Z P, Ma J, Zhang Q. An approach to multiple attribute decision making based on fuzzy preference information alternatives[J]. Fuzzy Sets and Systems, 2002 , 131 : 101-106.
  • 5Moore R E. Methods and application of Interval analysis[ M]. London: Prentice Hall, 1979 : 260-290.
  • 6Tanaka H , Ukuda T, Asal K. On fuzzy mathematical programming[ J]. Journal of Cybernetics, 1984,3 : 37-46.
  • 7Ishibuchi H, Tanaka H. Multi-objective programming in optimization of the interval objective function[ J]. European Journalof Operational Research, 1990, 48: 219-225.
  • 8徐泽水,达庆利.区间数排序的可能度法及其应用[J].系统工程学报,2003,18(1):67-70. 被引量:318
  • 9Sengupta A, Pal T K. On comparing interval numbers[ J]. European Journal of Operational Research, 2000 , 127 : 28-43.
  • 10Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution tointerval linear programming[ J]. Fuzzy Sets and Systems, 2001, 119 : 129-138.

二级参考文献42

共引文献519

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部