期刊文献+

基于产品合格率随机分布的投产量模型优化 被引量:2

Optimizing the Model of Quantity Putting into Production Based on Product Pass Rate Randomly Distributed
下载PDF
导出
摘要 当产品合格率随机分布时,建立起以投产综合损失费(欠产再投产费,过量产出费和不合格处理费)期望值为目标函数,投产量为决策变量的投产量模型。结合产品合格率随机分布不同(均匀分布和正态分布)推导求解了模型的最优解,得出了产量与投产量的等式关系,据此可有效地指导生产。最后通过数值实例分析验证了模型的有效性。 When the, product pass rate is randomly distributed, we build up the decision-making model of quantity putting into production, which is with total loss (insufficient production and then putting into production again charges, excess output charges and unqualified handling charges) expected value as the objective function, quantity putting into production as the decision variables. We sdve the optimal solution of the model with uniform distribution or normal distribution, and obtain equation between production and cast production, which effectively guide the production plan. Finally, we use a numerical example to prove the model is valid.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2015年第4期97-104,共8页 Operations Research and Management Science
基金 国家自然科学基金项目:适应复杂需求的SMPEs运营作业系统管理与优化研究(71271060) 订单式生产人工作业系统(MTO/MOS)组织与优化研究(70971026) 广东省自然科学基金项目:复杂需求环境下小型制造企业作业系统组织与优化研究(S2012010009278) 广东理工职业学院资助项目:基于复杂环境下中小型企业标准化生产运营系统优化研究(1321)
关键词 订单式生产 投产量 产品合格率 误差函数 欧米加函数 make to order quantity putting into prodution pass rate of product erf(x) LambertW (x)
  • 相关文献

参考文献9

  • 1Stevenson M , Hendry L C, Kingsman B G. A review of production planning and control : the applicability of key concepts tothe make-to-order industry[ J]. International Journal of Production Research, 2005,43(5) : 869-898.
  • 2Mohd S M , Hendry L. The SHEN model for MTO SMEs: a performance improvement tool[ J]. International Journal of Opera-tions & Production Management, 2003,23(5) : 470-486.
  • 3Chatterji S D. Lindeberg,s central limit theorem 6 la Hausdorff[ J]. Expositiones Mathematicae,2007 , 25(3) : 215-233.
  • 4张毕西,宋静,关柳颖.基于订单式生产下的产品计划投产量决策[J].系统工程理论与实践,2008,28(7):165-168. 被引量:19
  • 5Erd6lyi A, Magnus W , Oberhettinger F, Bateman H. Higher transcendental functions[ M]. McGraw-Hill: New York, 1953.
  • 6Corless R M , Gonnet G H, Hare D E G, et al. On the lambertW function [ J ]. Advances in Computational Mathematics,1996,5(1) : 329-359.
  • 7龙敏,周铁军.Lambert W函数性质及其应用[J].衡阳师范学院学报,2011,32(6):38-40. 被引量:6
  • 8Shampine L F, Kierzenka J, Reichelt M W. Solving boundary value problems for ordinary differential equations in MATLABwith bvp4c[ J]. Tutorial Notes, 2000, 6: 1-30.
  • 9吴专保.非线性方程几种数值解法的Matlab程序[J].宁波职业技术学院学报,2007,11(2):20-22. 被引量:2

二级参考文献13

  • 1王京祥,王在华.时滞状态反馈控制系统的稳定性增益区域[J].动力学与控制学报,2008,6(4):301-306. 被引量:8
  • 2姜迎春,张安民,宋学平.订单式中小企业生产计划管理系统研究[J].机械,2005,32(9):60-63. 被引量:13
  • 3刘亮,齐二石.高级计划与排程在MTO型企业中的应用研究[J].组合机床与自动化加工技术,2006(10):100-103. 被引量:10
  • 4R. M. Corless, G. H. Gonner. On the Lambert W function[J]. Adv. Comput. Math, 1996, 5:329-359.
  • 5J. Lam. Model-reduction of delay systems using the Pade approximations[J]. Int. J. Control, 1993, 57:377-391.
  • 6F. M. Asl, A. G. Ulsoy. Analysis of a system of linear delay differential Equations[J]. J. Dyn. Syst. Meas. Control, 2003, 125:215-223.
  • 7Y. Sun,P. W. Nelson, A. G. Ulsoy. Survey on Analysis of time delayed systems via the Lambert W function[J]. Adv. Dyn. Syst. ,2007, 14:296-301.
  • 8Y. Sun, A. G. Ulsoy. Solution of system of linear delay differential equations using the matrix Lambert function [C]. Proc. 25th American Control Conference, Minneapolis,MN. ,2006, 2433-2438.
  • 9C. H. Belgacem, M. Fnaiech. Solution for the critical thickness models of dislocation generation in epitaxial thin films using the Lambert W function[J]. J. Mater. Sci. , 2011, 46(6):1913-1915.
  • 10R. Solomonoff, A. Rapoport. Connectivity of random nets[J]. Bull. Math. Biophysics, 1951, 13 (2): 107-117.

共引文献23

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部