摘要
研究时滞传染病模型.从对模型线性化方程的特征方程根的分布分析入手,讨论了模型正平衡点的局部稳定性,确定了模型的线性稳定性区域,发现当模型中的时滞经过一系列临界值时,模型经历了Hopf分支和Hopf-Zero分支.最后,数值模拟验证了理论结果.
The epidemic model with time delay is studied. By analyzing the characteristic equation of the linearized system of original system,we obtain the local stability of the positive equilibrium,and establish the regions of linear stability of the equilibria. It is found that the model undergo the Hopf bifurcation and Hopf- Zero bifurcation when the delay passes through a sequence of critical values. Finally,some numerical simulations are carried out to support the analytic results.
出处
《宁夏师范学院学报》
2015年第3期1-5,14,共6页
Journal of Ningxia Normal University
基金
宁夏大学生创新创业训练计划项目(宁教高[2014]142号(23
24))
宁夏高等学校科研项目(宁教高[2014]222号(17))
宁夏自然科学基金(NZ13213)