期刊文献+

一类具有时滞的宿主-寄生虫交互模型的分支方向、稳定性和周期的研究

Analysis of the Bifurcation Direction,Statibility and Period of a Host-parasite Interaction Model with Delay
下载PDF
导出
摘要 考虑了一类具有细胞内时滞的宿主-寄生虫交互模型.由于时滞会导致Hopf分支的发生,在已有的研究结果基础上,利用规范型理论和中心流形的方法,得到了决定分支方向、稳定性和周期的表达式.最后,利用数值计算验证了理论结果. Many diseases is caused by parasites invaded the hosts. Thus,the study of host-parasite interaction is an interesting problem. In this paper,the bifurcation direction,statibility and period of a host-parasite model with intracellular delay is investigated. By use of the normal form theorem and center manifold argument,we obtain the formula which determined the direction,stability and period of bifurcation periodic solution. Then,we give an example to verify our theoretical results.
作者 翟昌盛
出处 《宁夏师范学院学报》 2015年第3期6-14,共9页 Journal of Ningxia Normal University
关键词 宿主-寄生虫 细胞内时滞 HOPF分支 分支方向 Host-parasite Intracellular delay Hopf bifurcation Bifurcation direction
  • 相关文献

参考文献1

二级参考文献20

  • 1ANDERSO R M, MAY R M. Population biology of infectious diseases I[J]. Nature, 1979, 280: 361-367.
  • 2REBERTS M G, LAWSON J R, GEMMELL M A. Population dynamics in echinococcosis and cysticercosis: Mathematical model of the life-cycle of Echinococcus granuloses[J]. Parasitology, 1986, 92: 621-641.
  • 3ANDERSON R M, MAY R M. The population dynamics of microparasites and their invertebrate[J]. Phil Tran T Soc Lond B, 1981, 291: 451-524.
  • 4FLATTA T, SCHEURING I. Stabilizing factors interact in promoting host-parasite coexistence[J]. Journal of Theoretical Biology, 2004, 228: 241-249.
  • 5NOWAK M A, MAY R, M. Virus Dynamics[M]. Cambridge: Cambridge University Press, 2000.
  • 6ABELL M, BRASELTON J, BRASELTON L. A host-microparasite model with a resistant host[J]. Ecolog- ical Complexity, 2005, 2: 300-311.
  • 7LI Gui-hua, WANG Wen-di, WANG Kai-fa, et al. Dynamic behavior of a parasite-host model with general incidence[J]. J Math Anal Appl, 2007, 331: 631-643.
  • 8KOROBEINIKO\V A. Global Properties of Basic Virus Dynamics Models[J]. Bulletin of Mathematical Biology, 2004, 66: 879-883.
  • 9SONYA J. Snedecor, Dynamic treatment model to examine the association between phenotypic drug resis- tance and duration of HIV viral suppression[J]. Bulletin of Mathematical Biology, 2005, 67: 1315-1332.
  • 10RIBEIRO R M. ARTHUR LO, PERELSON A S. Dynamics of hepatitis B virus infection[J]. Microbes and Infection, 2002, 4: 829-835.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部