期刊文献+

服从延迟几何过程退化系统的订货-更换策略优化

Optimal Order-Replacement Policy for a Deteriorating System Based on Delayed Geometric Process
下载PDF
导出
摘要 建立了以可用度为约束的可修退化系统的订货更换模型,以系统故障次数N为订货更换策略,在第N-1次故障维修后发出订单、第N次故障后进行更换.利用延迟的几何过程刻画系统退化特征,给出了系统经维修后寿命分布的通项表达式.借助更新过程理论求得系统长期运行的平均可用度与费用率.在系统满足预期可用度的前提下,得出最优的策略使得平均费用率最低.最后,通过数值算例演示了本模型的有效性. An order-replacement model was developed for a repairable deteriorating system.The policy N was adopted where the system would be replaced after the the Nth failure and the spare system was ordered at the end of the(N-1)th failure.The deterioration process of the system was modeled by the delayed geometric process.The long-run average availability and the average cost rate were derived by using the renewal reward theory.The optimal policy was obtained under the premise of meeting the availability requirement.Finally,a numerical example was given to illustrate the proposed model.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1101-1107,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61273035 71471135)资助
关键词 退化系统 延迟几何过程 订货更换策略 可用度 平均费用率 deteriorating system delayed geometric process order-replacement policy availability average cost rate
  • 相关文献

参考文献12

  • 1Lam Y. A note on the optimal replacement problem [J]. Advances in Applied Probability, 1988, 20 (2) : 479-482.
  • 2Zhang Y L. A bivariate optimal replacement policy for a repairable system [J]. Journal of Applied Proba- bility, 1994,31 (4) : 1123-1127.
  • 3Lain Y, Zhang Y L, Zheng Y H. A geometric process equivalent model for a multistate degenerative system [ J ]. European Journal of Operational Re- search, 2002,142 (1) : 21-29.
  • 4Wang G J, Zhang Y L. An optimal replacement poli- cy for a two-component series system assuming geo- metric process repair[J]. Computers and Mathematics with Applications,2007,54(2) :192-202.
  • 5成国庆,李玲,唐应辉.多态退化串联可修系统的最优维修更换策略[J].系统工程理论与实践,2012,32(5):1118-1123. 被引量:18
  • 6谭林,蒲婷,郭波.基于可用度的N部件可修串联系统最优更换策略[J].兵工学报,2009,30(8):1103-1107. 被引量:7
  • 7Jia J S, Wu S M. Optimizing replacement policy for a cold-standby system [J]. Applied Mathematics and Computation, 2009,214 (1) :133-141.
  • 8Wang G J, Zhang Y L. Optimal repair-replacement policies for a system with two types of failures[J]. European Journal of Operational Research, 2013, 226 (3) : 500-506.
  • 9Cheng G Q, Li L. An optimal replacement policy for a degenerative system with two-types of failure states [J]. Journal of Computational and Applied Mathemat- ics, 2014,261 (5) : 139-145.
  • 10黄傲林,李庆民,阮旻智,毛德军.基于延迟几何过程的可修劣化系统最优更换策略[J].系统工程与电子技术,2011,33(11):2449-2452. 被引量:7

二级参考文献44

  • 1吴少敏,张元林.修理情形不同的两部件串联系统的可靠性分析[J].应用数学,1995,8(1):123-125. 被引量:18
  • 2Barlow R E, Hunter L C. Optimum preventive maintenance policy [J]. Operations Research, 1960, 8:90- 100.
  • 3Brown M, Proschan F. Imperfect repair[J]. Application Probability, 1983, 20:851 - 859.
  • 4Pham H, Wang H. Imperfect maintenance[J]. European Journal of Operational Research, 1996, 94 : 425 - 438.
  • 5Lam Y. A note on the optimal replacement problem [ J ]. Advances in Applied Probability, 1988, 20: 479- 482.
  • 6Zhang Y L, Wang G J. A bivariate optimal replacement policy for a multistate repairable system [ J ]. Reliability Engineering and System Safety, 2007, 92: 535- 542.
  • 7Lam Y. A geometric process maintenance model [ J ]. Southeast Asian Bulletin of Mathematics, 2003, 27:295 - 305.
  • 8Lam Y. A geometric process maintenance model with preventive repair[ J ]. European Journal of Operational Research, 2007, 182 : 806 - 819.
  • 9Lam Y, Zhang Y L. Analysis of a two-component series system with a geometric process model [ J ]. Naval Research Logistics, 1996, 43: 491- 502.
  • 10Zhang Y L, Wang G J. A geometric process repair model for a series repairable system with k dissimilar components [ J ]. Applied Mathematical Modeling, 2007, 31: 1997-2007.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部