期刊文献+

不同AM真菌对玉米生长的促生效应 被引量:4

Effects of various AM fungi on the growth of corn(Zea mays )
下载PDF
导出
摘要 在盆栽条件下对玉米接种5种不同AM真菌:地表球囊霉、光壁无梗囊霉、单孢球囊霉、根内球囊霉以及土著AM真菌,研究不同AM真菌对玉米的促生效应.结果显示不同AM真菌均能够成功侵染玉米根系,但对玉米生长的促生作用存在差异,除了单孢球囊霉外的4种AM菌剂均对玉米地上部分的生长产生显著的促进效应.对玉米地下生物量而言,只有土著AM真菌具有显著的促进效应,所有AM真菌菌剂均没有显著增加玉米的根长.从综合效应而言,根内球囊霉促生效应最显著,单孢球囊霉对玉米没有显著的促生效应.结果表明不同AM真菌对同一宿主植物促生效应不同,只有选择合适的AM真菌才能产生最佳的效果. Five AM fungi, Glomus versiforme, Acaulospora laevis, Glomus monosporum, Glomus intraradices, and the indigenous AM fungi, were selected to test their effects on the growth of corn. Results showed that all of the five AM fungi treatments could infected and formed symbiosis with corn roots. The effects of AM fungi on corn growth performance were significant difference. Four AM fungi, except G. monosporurn, could improved the growth of corn significantly, such as total biomass, shoot biomass, plant height and leaf number. To the root biomass, only indigenous fungi have the significant promotion effects. And all kinds of AM fungi have no significant influence on the root length. G. intraradices has the most effects on the growth of corn, and G. monosporum has the least, which means that different AM fungi has different effects on the same host plants.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期558-563,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(31270558) 国家公益性行业(农业)科研专项经费(201203041) 中央高校基本科研业务费专项资金项目(lzujbky-2013-86)
关键词 AM真菌 侵染 促生效应 玉米 AM fungi infection promoting effect Zea mays
  • 相关文献

参考文献32

  • 1Smith S E, Read D J. Mycorrhizal symbiosis[M]. New York: Academic Press, 2010: 11-188.
  • 2Cho K, Toler H, Lee J, et al. Mycorrhizal symbiosis and response of Sorghum plants to combined drought and salinity stresses[J]. Journal of Plant Physiology, 2006, 163(5): 517-528.
  • 3Vangronsveld J, Colpaert J V, van Tichelen K K. Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treat- ment and revegetation[J]. Environmental Pollution, 1996, 94(2): 131-140.
  • 4Bunn R, Lekberg Y, Zabinski C. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilac plantsIJ]. Ecology, 2009, 90(5): 1378-1388.
  • 5Heijne B, van Dam D, Heil G W, et al. Acidification effects on vesicular-arbuscular mycorrhizal (VAM) infection, growth and nutrient uptake of established heath land herb species[J]. Plant and Soil, 1996, 179: 197-206.
  • 6Sikes B A, Cottenie K, Klironomos J N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas[J]. Journal of Ecology, 2009, 97(6): 1274-1280.
  • 7罗巧玉,王晓娟,李媛媛,林双双,孙莉,王强,王茜,金樑.AM真菌在植物病虫害生物防治中的作用机制[J].生态学报,2013,33(19):5997-6005. 被引量:44
  • 8Reen R, Thompson J, Clewett T, et al. Yield response in chickpea cultivars and wheat following crop rotations affecting population densities of Pratylenchus thornei and arbuscular mycorrhizal fungi[J]. Crop and Pasture Science, 2014, 65(5): 428-441.
  • 9Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments[J]. Ecology Letters, 2009, 12(5): 452-461.
  • 10Bever J D, Dickie I A, Facelli E, et al. Rooting theories of plant community ecology in microbial interactions[J]. Trends in Ecology & Evolution, 2010, 25(8): 468-478.

二级参考文献52

  • 1杨晓红,孙中海,邵菊芳,仝瑞建.丛枝菌根真菌培养方法研究进展[J].菌物学报,2004,23(3):444-456. 被引量:14
  • 2Smith S E, Read D J. Mycorrhizal Symbioses (Third edition)[M]. London: Academic Press, 2008: 13-15.
  • 3Baird J M, Walley F L, Shirtliffe S J. Arbuscular myeorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil[J]. Myrorrhiza, 2010, 20: 541-549.
  • 4Atul-Nayyar A, Hamel C, Hanson K, et al. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand[J]. Myrorrhiza, 2009, 19: 239-246.
  • 5Liu A, Hamel C, Hamilton R I, etal. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L. ) grown in soil at different P and micronutrient levels[J]. Myrorrhiza, 2000, 9: 331-336.
  • 6Caris C, H6rdt W, Hawkins H J, et al. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants[J]. Myrorrhiza, 1998, 8: 35-39.
  • 7Neumann E, Schmid B, R6mheld V, et al. Extraradical development and contribution to plant performanc.e of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying[J]. Myrorrhiza, 2009, 20: 21-23.
  • 8Toussaint J P, Smith F A, Smith S E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet bas- il irrespective of phosphorus nutrition[J]. Myrorrhiza, 2007, 17: 291-297.
  • 9Garcia I V, Mendoza R E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil[J]. Myrorrhiza, 2007, 17: 167-174.
  • 10Mena-Violante H G, Ocampo-Jimfinez O, Dendooven L, et al. Arbuseular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuurn L. cv San Luis) plants exposed to drought[J]. Myrorrhiza, 2006, 16: 261-267.

共引文献59

同被引文献75

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部