期刊文献+

基于体感电刺激的脑-机接口实验范式初探(英文) 被引量:6

A Preliminary Study of Brain-Computer Interface Paradigm Based on Electrical Somatosensory Modality
下载PDF
导出
摘要 大脑对各类感觉输入(视、听模态)会产生不同的响应信号,脑-机接口正是利用这一响应信号实现大脑与外部设备间直接的通讯.然而以电刺激作为脑-机接口的输入模态还未有报道.本研究尝试通过使用体感电刺激作为脑-机接口的输入,从而诱发事件相关电位(ERP).在整个实验中,分别使用视觉、听觉以及电刺激作为诱发因素,针对每种条件下的事件相关电位及其分类准确率开展对比分析.结果显示电刺激所诱发的事件相关电位幅值较高且具有相对稳定的潜伏期,其分类准确率高于听觉刺激范式.也就表明了以不同刺激强度作为参数的电刺激范式作为脑-机接口应用的可行性,这将进一步拓展脑-机接口的应用领域. Brain-computer interfaces (BCIs) usually apply the brain signals in responding to various sensory inputs in visual or auditory modalities to provide direct communication pathways to external devices. No early study shows the possibility of using electrical stimuli as BCI input. In this study, we adopted the electrical somatosensory stimuli as the BCI input to elicit event-related potential (ERP). Three-condition experiment was conducted using visual, auditory and electrical stimuli individually in each condition. We compared the ERP components of each condition as well as the classification accuracy of these three conditions. Results show that electrical stimuli could provide relatively high amplitude and stable latencies of ERP components. It also enjoys higher class-discriminative information and classification accuracy than auditory paradigms. Thus, electrical paradigms with different stimuli intensities could be a good choice for BCI applications, which will enlarge the options for BCI purpose.
出处 《纳米技术与精密工程》 CAS CSCD 北大核心 2015年第5期376-382,共7页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(81271685) 中央高校基本科研业务费专项资金资助项目 协和青年基金资助项目(3332015119)
关键词 脑-机接口 事件相关电位 电刺激 听觉刺激 视觉刺激 brain-computer interface event-related potential electrical stimuli auditory stimuli visual stimuli
  • 相关文献

参考文献16

  • 1Yin E, Zhou Z,JiangJ, et al. A dynamically optimized SSYEP brain-computer interface (BCI) speller[J]. IEEE Trans Biomed Eng, 2015, 62(6): 1447-1456.
  • 2Hebert-Lalonde N, Cannant L, Safi D, et al. A frequencytagging electrophysiological method to identify central and peripheral visual field deficits[J]. Doc Ophthalmol, 2014, 129 (1) : 17-26.
  • 3Hu L, Xiao P, Zhang Z G, et al. Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond[J]. Neurolmage , 2014, 84: 876-887.
  • 4Fonnaggio E, Storti SF, Galazzo I B, et al. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance[J]. Brain Topogr, 2015, 28 (2) : 352- 363.
  • 5Mayer K, Wyckoff S N, Strehl U. One size fits all? Slow cortical potentials neurofcedback , A review[J] . 1 Atten Disord , 2013, 17 (5) : 393-409.
  • 6Zhang D, Song H, Xu H, et al. An N200 speller integrating the spatial profile for the detection of the non-control state[J].1 Neural Eng, 2012, 9 (2): 026016.
  • 7Kubler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients[J]. Ann N Y Acad Sci, 2009, 1157: 90-100.
  • 8Treder M S, Blankertz B. (C) overt attention and visual speller design in an ERP-based brain-computer interface[J]. Behav Brain Funct , 2010, 6: 28.
  • 9HohneJ, Krenzlin K, Dahne S, et al. Natural stimuli improve auditory BCIs with respect to ergonomics and performance[J]. 1 Neural Eng, 2012, 9 (4) : 045003.
  • 10Muller-Putz G R, Scherer R, Neuper C, et al. Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces[J]. IEEE Trans Neural Syst Rehabit Eng, 2006, 14 (1) : 30-37.

同被引文献26

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部