期刊文献+

求解VRPSDP的多邻域导向局部搜索算法

Multiple Neighborhood Guided Local Search Algorithm for Vehicle Routing Problem with Simultaneous Delivery and Pickup
下载PDF
导出
摘要 针对有运输容量约束的车辆路径问题,提出一种基于多邻域的导向局部搜索算法.该算法首先利用最近邻法构造初始可行解,然后再从该可行解出发同时在多个邻域内进行局部搜索,当陷入局部最优解时找出解中惩罚效用最大的弧并修改惩罚特征系数和目标函数,在选择当前的最优解后从新的目标函数出发重新进行局部优化.通过对54个算例的求解,仿真结果表明了该算法在解决卸装一体化车辆路径优化问题上是一种可行有效的方法. This Paper proposed a Multiple Neighborhood Guided Local Search Algorithm (MN_GLS)to solve vehicle routing problem with simultaneous delivery and pickup.Firstly,it used the nearest neighbor method to build the initial solution.Secondly,it did the local search in multi-operator from the initial solution,and found the bow which had the biggest utility of punishment value when the solution fail into the local optimal solution,then changed the punishment of features value and objective function value.Thirdly,it selected the current optimal solution from the local optimal solutions,and then did the local optimization in multi-operator again from the current optimal solution which has the new objective function value.By means of 54 examples,the simulation results illustrate that MN_GLS is an effective and stabilize method for Vehicle Routing Problem with Simultaneous Delivery and Pickup.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第9期109-113,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61201447) 河南省高等学校青年骨干教师资助计划项目(2014GGJS-084) 河南省教育厅科学技术研究重点项目(13A520367) 郑州轻工业学院校级青年骨干教师培养对象资助计划项目(XGGJS02) 郑州轻工业学院博士科研基金资助项目(2010BSJJ038)
关键词 车辆路径问题 多邻域 导向局部搜索 惩罚策略 Vehicle Routing Problem Multiple Neighborhood Guided Local Search Penalty Strategy
  • 相关文献

参考文献12

  • 1Cordeau J F, Gendreau M, Hertz A, et al. New heu- ristics for the vehicle routing problem [M]. SU: Springer, 2005.
  • 2Gajpal Y, Abad P. An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup[J]. Computers Operations Research, 2009, 36(12) : 3215-3223.
  • 3Ai T J, Kachitvichyanukul V. A particle swarm opti- mization for the vehicle routing problem with simulta- neous pickup and delivery[J]. Computers Opera- tions Research, 2009, 36(5): 1693-1702.
  • 4Tasan A S, Gen M. A genetic algorithm based ap- proach to vehicle routing problem with simultaneous pick-up and deliveries[J]. Computers Industrial En- gineering, 2012, 62(3): 755-761.
  • 5Alfredo Tang Montan6 F, Galvao R D. A tabu search algorithm for the vehicle routing problem with simulta- neous pick-up and delivery service[J]. Computers Operations Research, 2006, 33(3) : 595-619.
  • 6Ganesh K, Narendran T T. CLOVES: a cluster-and- search heuristic to solve the vehicle routing problem with delivery and pick-up[J]. European Journal of Op- erational Research, 2007, 178(3): 699-717.
  • 7Crispim J, Brando J. Metaheuristics applied to mixed and simultaneous extensions of vehicle routing prob- lems with backhauls[J]. Journal of the Operational Research Society, 2005, 56(11): 1296-1302.
  • 8Zachariadis E E, Tarantilis C D, Kiranoudis C T. A hybrid metaheuristic algorithm for the vehicle routing problem with simultaneous delivery and pick-up service [J]. Expert Systems with applications, 2009, 36 (2) 1070-1081.
  • 9李菊芳,谭跃进.导引式局部搜索在一类过度约束VRP中的应用[J].系统工程与电子技术,2004,26(11):1612-1615. 被引量:3
  • 10Voudouris C, Tsang E P K, Alsheddy A. Guided local search[M]. Handbook of metaheuristies. US. Spring- er, 2010: 321-361.

二级参考文献4

  • 1Christos Voudouris, Edward Tsang. Partial constraint satisfaction problems and guided local search[A]. Proc of the second international conference on the practical application of constraint technology, 1996.
  • 2Patrick Prosser, Paul Shaw. Study of greedy search with multiple improvement heuristics for vehicle routing problems[EB/OL]. http://www.dcs.st-and.ac.uk/~apes/ papers/RR201.ps.gz, 1996.
  • 3Martin Zachariasen. Memory-based metaheuristics: tabu search and guided local search[EB/OL]. http://www.diku.dk/research-groups/algorithms/courses/tabu_gls.ps.gz, 2001.
  • 4魏明,高成修,胡润洲.一种带时间窗和容量约束的车辆路线问题及其TabuSearch算法[J].运筹与管理,2002,11(3):49-54. 被引量:11

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部