期刊文献+

基于二维局部均值分解的图像多尺度分析处理 被引量:11

Multiscale Image Analysis Based on Bidimensional Local Mean Decomposition
下载PDF
导出
摘要 在图像多尺度分析时,为了对后续的图像处理提供高质量的特征输入,在一维局部均值分解算法基础上提出一种二维局部均值分解算法.首先采用优化的8-邻域算子求取图像中的局部极值点;然后针对鞍点对求解局部相邻极值点时的影响,提出一种基于自适应窗口的搜寻方法,以控制局部相邻极值点数求取局部相邻极值点,进而得到平滑的包络估计函数和局部均值函数;最后依据包络估计函数和局部均值函数,通过迭代寻优得到相应的乘积函数将图像分解成不同尺度下的成分.在人工合成图像与典型图像的多尺度分析处理结果表明,该算法可行有效;与二维经验模态分解算法的比较结果表明,该算法具有更快的速度和更好的处理效果;并对该算法中的重要参数进行了敏感性分析,验证了算法具有较好的鲁棒性,给出了比较合理的参数取值范围. Multiscale image analysis provides important feature inputs for the further image processing. This paper proposes a new multiscale image analysis method called bidimensional local mean decomposition (BLMD) on the basis of local mean decomposition(LMD). Firstly, BLMD uses 8-neighborhood operator to obtain local extreme points; In order to eliminate the influence of saddle points when searching the local ad-jacent extreme, this paper proposes an adaptive window-based search method to control the number of local adjacent extreme points; Finally BLMD calculates the smooth envelope estimation function and local mean function to generate the product function, which decomposes images into different scale components. The results on synthetic images and typical real-world images indicate that BLMD is effective for multi-scale image analysis. In comparison with bidimensional empirical mode decomposition (BEMD), BLMD presents the more effective and fast image processing results. In addition, the parameter sensitivity analysis approves that BLMD shows robust performance in image processing. Finally, the reasonable ranges of some key pa-rameters for BLMD are given in this paper.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第10期1842-1850,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(51375290 71001060) 上海市教育委员会科研创新项目(13YZ002)
关键词 二维经验模态分解 二维局部均值分解 多尺度分析 本征模态函数 乘积函数 bidimensional empirical mode decomposition bidimensional local mean decomposition multiscale analysis intrinsic mode function production function
  • 相关文献

参考文献15

  • 1汪粼波,郭延文,夏天辰,金国平.样本驱动的半自动图像集前背景分割[J].计算机辅助设计与图形学学报,2013,25(6):794-801. 被引量:6
  • 2董洪伟.基于网格变形的从图像重建三维人脸[J].计算机辅助设计与图形学学报,2012,24(7):932-940. 被引量:9
  • 3陆筱霞,李思昆.自适应的遥感纹理并行压缩解压算法[J].计算机辅助设计与图形学学报,2013,25(5):599-606. 被引量:2
  • 4谢雨来,李醒飞,吕津玮,高雅彪.基于SURF算法的水下图像实时配准方法[J].计算机辅助设计与图形学学报,2010,22(12):2215-2220. 被引量:16
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decompositionand the Hilbert spectrum for nonlinear andnon-stationary time series analysis[J]. Proceedings of the RoyalSociety of London A: Mathematical, Physical and EngineeringSciences. The Royal Society, 1998, 454(1971): 903-995.
  • 6Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis bybidimensional empirical mode decomposition[J]. Image andVision Computing, 2003, 21(12): 1019-1026.
  • 7Bhuiyan S M A, Adhami R R, Khan J F. Fast and adaptivebidimensional empirical mode decomposition using order-statisticsfilter based envelope estimation[J]. EURASIP Journal onAdvances in Signal Processing, 2008, 2008: 728356.
  • 8Pan J J, Tang Y Y. Extremum mean empirical mode decomposition[C] //Proceedings of the 5th International Congress onImage and Signal Processing. Los Alamitos: IEEE ComputerSociety Process, 2012: 1556-1561.
  • 9Chen C Y, Guo S M, Chang W S, et al. An improved bidimensionalempirical mode decomposition: a mean approach for fastdecomposition[J]. Signal Processing, 2014, 98: 344-358.
  • 10Bhuiyan S M A, Adhami R R, Khan J F. Edge detection via afast and adaptive bidimensional empirical mode decomposition[C] //Proceedings of IEEE Workshop on Machine Learningfor Signal Processing. Los Alamitos: IEEE Computer SocietyPress, 2008: 199-204.

二级参考文献75

共引文献162

同被引文献81

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部