摘要
为提高用户对于网络中海量社会信息的浏览效率,减轻交互负担,提出一种多线索的社会信息组织方式,对于其中的主题线索,提出一种基于LDA的主题自动提取方法,以地点为单位聚合大量消息来挖掘主题,然后根据生成概率模型为每条消息选择主题;基于多线索的信息组织,设计并实现一种在虚拟场景中显示社会信息的可视化方法,采用经典的可视化结构和直观的交互操作.实验结果证明了主题提取方法的有效性,多线索的信息组织和可视化方法能够有效地提高交互效率,可满足用户浏览信息的不同需求.
To improve interaction efficiency and reduce interactive burden for browsing massive social in-formation on the Internet, a multi-cue information organizing method and a LDA-based topic extraction ap-proach are proposed. A large amount of messages of a location are aggregated to discover the topics, and then the topic of each message is selected using generative probabilistic model. A visualization method is designed and implemented to display social information in virtual scenes based on multi-cue information organizing, which utilizes classical visual structures and natural interaction. Experiment results prove the effectiveness of the topic extracting method. Interaction efficiency is improved effectively and different re-quirements for browsing information are met with the multi-cue information organizing and visualization method.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2015年第10期1993-2000,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家"九七三"重点基础研究发展计划项目(2010CB328002)
国家科技支撑项目(2013BAK03B07)
国家自然科学基金项目(61232014
61121002
61173080)
关键词
社会信息
主题模型
信息可视化
用户界面
social information
topic modeling
information visualization
user interface