期刊文献+

Millimeter wave band ultra wideband transmitter MMIC

Millimeter wave band ultra wideband transmitter MMIC
原文传递
导出
摘要 This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft= 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz. This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft= 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.
出处 《Journal of Semiconductors》 EI CAS CSCD 2015年第9期125-130,共6页 半导体学报(英文版)
关键词 MILLIMETER-WAVE ultra wideband transmitter negative resistance oscillator MMIC GaAs pHEMT millimeter-wave ultra wideband transmitter negative resistance oscillator MMIC GaAs pHEMT
  • 相关文献

参考文献20

  • 1Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mo- bile communications for 5G cellular: it will work. Access IEEE, 2013:335.
  • 2Rinaldi C, Rendevski N, Cassioli D. Performance evaluation of UWB signaling at mm waves. IEEE International Conference on Ultra-Wideband (ICUWB), 2014:379.
  • 3Abidi A A. CMOS microwave and millimeter-wave iCs: the his- torical background. IEEE International Symposium on Radio- Frequency Integration Technology (RFIT), 2014:1.
  • 4McQuiddy D N Jr, Wassel J W, Lagrange J B, et al. Monolithic microwave integrated circuits: an historical perspective. IEEE Trans Microw Theory Tech, 1984, MTT-32:997.
  • 5First report and order, revision of part 15 of the commis- sion's rules regarding ultra wideband transmission systems. FCC,Washington, DC, ET Docket 98-153, 2002.
  • 6Mishra G, Sahu S, Sahu S. UWB planar antenna for millimeter wave applications. IEEE Applied Electromagneties Conference (AEMC), 2013:1.
  • 7Loyez C, Rolland N, Bocquet M millimeter-wave indoor location UWB technology applied to systems. International Radar Conference (Radar), 2014:1.
  • 8Gresham I, Jenkins A, Lanteri J, et al. Ultra-wideband radar sen- sors for short-range vehicular applications. IEEE Trans Microw Theory Tech, 2004, 52(9): 2105.
  • 9Veenstra H, Heijden E, Goor D. 15-27 GHz pseudo-noise UWB transmitter for short-range automotive radar in a production SiGe technology. Proc ESSCIRC, Grenoble, France, 2005:275.
  • 10Du Y, Zheng J, Wang L, et al. Widely-tunable and background- free ultra-wideband signals generation utilizing polarization modulation-based optical switch. IEEE Photon Technol Lett, 2013, 25(4): 335.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部