期刊文献+

负载Cu-Co纳米氧化物高效催化氧化水合肼研究 被引量:1

Study of Supported Cu- Co Composite Oxide Nanoparticles as a Highly Efficient Catalyst for Hydrazine Degradation
下载PDF
导出
摘要 催化湿式过氧化氢技术(CWPO)以廉价易得的H2O2作为氧化剂,不仅可以使反应在常温常压下进行,而且H2O2分解产生的羟基自由基OH·具有很强的氧化能力,能氧化绝大多数有机物,且氧化速度较快,是处理难降解物质的重要方法之一。催化剂是催化湿式过氧化氢技术的关键,研究和开发新型高效稳定的催化剂,对于催化湿式过氧化氢技术在废水处理领域的推广应用更是至关重要。本文以肼废水为处理对象,探讨了负载型催化剂在CWPO工艺中对肼废水的催化降解活性。采用浸渍法分别制备Cu O-γ/Al2O3催化剂和钴改性Cu O-Co3O4-γ/Al2O3催化剂在CWPO工艺中对高COD的肼废水的催化降解活性进行对比。相较于Cu O-γ/Al2O3,含Co的催化剂在催化降解水合肼废水上具有更高的催化活性和稳定性。在反应温度60℃,起始p H=8.0,3 m L/L的H2O2的条件下,5%Cu O-0.5%Co3O4-γ/Al2O3催化剂催化降解40 min后COD的去除率达到91.5%。该纳米催化剂能够广泛运用于环境污染物处理上。 Catalystic wet peroxide oxidation treatment was considered one of the most promising and effective methods of degradating organic pollutants due to its high mineralization efficiency, which relied on strong oxidation property of hydroxyl radicals produced by H2 O2 oxidant. As the key of CWPO, it was essential to development of new, highly efficient and stable catalysts and application of CWPO in the field of waste water degradation. The sup-ported composite oxide nanoparticles of CuO-γ/Al2 O3 and CuO-Co3 O4 -γ/Al2 O3 were prepared by the methods of two-step impregnation and calcination, and evaluated through the CWPO treatment of hydrazine wastewater in the high COD conditions. Compared with CuO-γ/Al2 O3 , cobalt-containing samples embody higher catalytic activity and stability in catalytic decomposition of hydrazine wastewater. At the reaction temperature of 60 ? C, initial pH of 8. 0, and the 3 mL/L dosage of peroxide, 91. 5% COD removal efficiency with the 5%CuO-0. 5%Co3 O4 -γ/Al2 O3 catalyst in 40 minute were obtained. It is expected that the composite supported nanocatalysts would be widely used in environmental pollution control.
作者 苗春存
出处 《化工时刊》 CAS 2015年第8期19-24,共6页 Chemical Industry Times
关键词 肼废水 Cu-Co共掺杂纳米粒子 催化湿式过氧化氢法 COD去除率 hydrazine wastewater Cu-Co composite oxide nanoparticle catalystic wet peroxide oxidation COD removal efficiency
  • 相关文献

参考文献14

  • 1Golabi S M, Zare H R. Eleetrocatalytie Oxidation of Hy- drazine at Glassy Carbon Electrode Modified with Electro- deposited Film Derived from Caffeic Acid [ J ]. Electroa- nalysis. 1999, 11(17) :1 293 -1 300.
  • 2Batchelor- McAuley C, Banks C E, Simm A O. , et al. The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron - doped diamond and palladium plated BDD micradisc array [J]. Analyst, 2006, 131(1) :106-110.
  • 3Garrod S, BoUard M E, Nicholls A. W. , et al. Intergrated metabonomic analysis of the muhiorgan effects of hydrazine toxicity in the rat [J]. Chem. Res. Toxicol. 2005, 18 (2) :115 - 122.
  • 4Mo J W, Ogorevc B, Zhang X J. , et al. Cobalt and cop- per hexacyanoferrate modified carbon fiber microelectrode as an all - solid potentiometric microsensor for hydrazine [ J]. Electroanalysis. 2000, 12(1) :48 - 54.
  • 5Helvenston M C, Vegas L. , et al. Methods and systems for remediationg hydrazine - contaminated equipment and/ or suffaCos[P]. US, PN7074959. 2006 -04 - 11.
  • 6Lee, D. K. ; Kim, D. S. Catalytic wet air oxidation of carboxylie acids at atmospheric pressure. Catalysis Today [J]. 2000, 63(2 -4) :249 -255.
  • 7Chen I P, Lin S S, Wang C H. , et al. CWAO of phenol using COO2/- AI203 with promoter- Effectiveness of pro- moter addition and catalyst regeneration [ J ]. Chemo- sphere, 2007, 66: 172- 178.
  • 8Gogete P. R. ; Pandit A. B. A review of imperative tech- nologies for wastewater treatment I: oxidation technologies at ambient conditions[ J]. AdvanCos in Environmental Re- search. 2004, 8(3/4) :501 -551.
  • 9Zazo J A, Fralle A F, Rey A, Bahamonde A. , et al. Op- timizing calcinations temperature of Fefactivated carbon catalysts for CWPO [ J ]. Catalysis Today. 2009, 143 ( 3/ 4) :341 -346.
  • 10Inehaurrondo N S, Massa P, Fenoglio R., et al. Efficient catalytic wet peroxide oxidation of phenol at moderate tem- perature using a high - load supported copper catalyst [J]. Chemical engineering journal, 2012, 198 - 199: 426 - 4 344.

二级参考文献30

  • 1张志军,包志成,王克欧,郑明辉.二氧化钛催化下的氯代二苯并-对-二恶英光解反应[J].环境化学,1996,15(1):47-51. 被引量:51
  • 2[1]Huston Patrick L, et al. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assited Fenton reaction [J ]. Wat. Res., 1999, 33 (5): 1 238 - 1 246
  • 3[2]Engwall Margaret A, et al. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-fenton reaction[J]. Wat. Res., 1999, 33(5): 1 151 - 1 158
  • 4[3]Pignatello J. Dark and photoassited Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J]. Environ Sci. Technol., 1992,26: 944 - 950
  • 5[4]Benitez F Javier, et al. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes [J ]. Chemosphere, 2000, 41(8):1 271-1 277
  • 6[5]Vollmuth Stefan, et al. Degradation of PCDD, PCDF, PAH, PCB and Chlorinated Phenols During the Destruction-Treatment of Landfill Seepage Water in Laboratory Model Reactor (UV,Ozone, and UV/Ozone)[J]. Chemoshphere, 1995, 30(12):2 317-2 331
  • 7[7]Bandala Erick R, et al. Solar photocatalytic degradation of aldrin[J]. Catalysis Today, 2002,76(2): 189- 199
  • 8[8]Zaleska Adriana, et al. Photocatalytic degradation of lindane, p ,p'-DDT and methoxychlor in an aqueous environment [J]. Journal of Photochemistry and Photobiology A: Chemistry,2000, 135 (2 - 3):213-220
  • 9[9]Catallo W James, Junk Thomas. Sonochemical dechlorination of hazardous wastes in aqueous systems [J]. Waste Management, 1995,15(4) :303 -309
  • 10[10]Jiang Yi, et al. Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions[J]. Ultrasonics Sonochemistry, 2002, (9): 317 - 323

共引文献61

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部