期刊文献+

具有高阶分数阶导数的微分方程的积分型边值问题的正解探讨(英文) 被引量:1

Positive Solutions to Integral Boundary Value Problem of Nonlinear Differential Equations with Higher Fractional Order
下载PDF
导出
摘要 应用Guo-Krasonselskii不动点定理,探讨了非线性分数阶微分方程包括Riemann-Liouville型导数的积分型边值问题正解的存在性. By using the Guo-Krasnoselskii fixed point theorem,the existence of positive solutions for nonlinear fractional differential equations involving the Riemann-Liouville derivative with integral boundary-value conditions are investigated.
出处 《宁夏大学学报(自然科学版)》 CAS 2015年第3期219-224,共6页 Journal of Ningxia University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(11361047) supported by the Research Project of Shanxi Scholarship Council of China(2013-102) supported by the Natural Science Foundation of Shanxi Province(2013011001-3)~~
关键词 分数阶微分方程 积分型边值条件 正解 超(次)线性条件 fractional differential equations integral boundary conditions positive solutions superlinear(sublinear)condition
  • 相关文献

参考文献8

  • 1PODLUBNY I.Fractional differentiation equations[M].New York:Academic Press,1999.
  • 2SAMKO S G,KILBAS A A,MARICHEV O I.Fractional integrals and derivatives,theory and applications[M].Yverdon:Gordon and Breach,1993.
  • 3KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier Science B V,2006.
  • 4NONNENMACHER T F,METZLER R.On the Riemann-Liouville fractional calculus and some recent applications[J].Frctals,1995(3):557-566.
  • 5ALBERTO C,WANG Guotao.Positive solutions of nonlinear fractional differential equations with integral boundary value Conditions[J].J Math Anal Appl,2012,389(1):403-411.
  • 6王丽颖,许晓婕.分数阶半正边值问题一个正解的存在性定理[J].吉林大学学报(理学版),2014,52(4):667-671. 被引量:2
  • 7BAI Zhanbing,LHaishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311(2):495-505.
  • 8郑艳萍,王文霞,刘宇民.关于分数阶微分方程解的注记[J].中北大学学报(自然科学版),2011,32(1):67-70. 被引量:5

二级参考文献17

  • 1Bai Zhanbing,Lü Haishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J.Math.Anal.Appl.,2005,311:495-505.
  • 2Zhang Shuqin.Positive solutions to singular boundary value problem for nonlinear fractional differential equation[J].Computer and Mathematics with Applications,2010,59:1300-1309.
  • 3Xu Xiaojie,Jiang Daqing,Yuan Chengjun.Multiple positive solutions for boundary value problem of a nonlinear fractional differential equation[J].Nonlinear Analysis,2009,71:4676-4688.
  • 4Podlubny I.Fractional Differential Equations[M].New York:Academic Press,1999.
  • 5Lakshmikantham V,Vatsale A S.Basic theory of fractional differentialequation[J].Nonlinear Analysis,2008,69:2677-2682.
  • 6张秀云,寇春海.分数阶泛函微分方程解的存在唯一性[J].东华大学学报(自然科学版),2007,33(4):452-454. 被引量:6
  • 7Kilbas A A, Srivastava H M, Truiillo J J. Theory and Applications of Fractional Differential Equations [M].Amsterdam: Elsevier, 2006.
  • 8Oldham K B, Spanier J. The Fractional Calculus [M]. New York: Academic Press, 1974.
  • 9Ross B. Fractional Calculus and Its Applications [M].Lecture Notes in Mathematics. Vol. 475. Berlin: Springer Verlag, 1975.
  • 10Nonnenmacher T F, Metzler R. On the Riemann-Liouvile Fractional Calculus and Some Recent Applications [J]. Fractals, 1995(3): 557-566.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部